
Graphical Animations of State Machines∗

Tam Thi Thanh Nguyen, Kazuhiro Ogata
JAIST, Japan

Email: {tamnguyen,ogata}@jaist.ac.jp

Abstract—Systems verification with interactive theorem
proving (ITP) is a promising technology that could make
software reliable, although it is necessary to utilize many other
technologies, such as testing, so as to make software really
reliable. Lemma conjecture is one of the most intellectual
activities in ITP. While we were performing systems verification
with ITP, we happened to find out some state patterns in
which the reachable states of a state machine are classified
and conjectured several useful lemmas from the state patterns
to complete the formal verification. It would be very useful to
make it possible to obtain such state patterns of a given state
machine with a reasonable amount of efforts. This research
utilizes human beings’ ability to recognize patterns in various
kinds of data, such as graphical animations. The research
aims at designing and implementing a state machine graphical
animation tool and confirming that human beings can recognize
state patterns in state machine graphical animations.

Keywords-DRAW-SVG, graphical animations, lemmas,
Maude, state machines, state patterns, SVG

I. INTRODUCTION

The world crucially depends on software. It would be
impossible to even imagine our lives without use of any
software. The societal reliability is almost the same as that of
software. How much human beings rely on software must be
increasing in the future. Therefore, we need to have reliable
technologies to make software truly reliable. Of course,
we need to use multiple technologies for this challenge. A
possibly promising technology is systems verification with
interactive theorem proving. Hence, many proof assistants
have been developed, such as PVS, ACL2, Isabelle, and
Coq. One of the most intellectual activities in interactive
theorem proving (ITP) is lemma conjecture. Accordingly,
many researches have been conducted, trying to come up
with how to conjecture lemmas. None of them, however, is
good enough. Thus, we need to make further efforts to come
up with a better way to do so.

Various kinds of systems can be formalized as state
machines. A state machine M , 〈S, I, T 〉 consists of a set
S of states including the set I of initial states and a binary
relation T ⊆ S × S over states. An element (s, s′) ∈ T is
called a state transition of M . The set RM of the reachable
states of M is inductively defined as follows: I ⊆ RM and
if s ∈ RM and (s, s′) ∈ T , then s′ ∈ RM . A state predicate
p is called an invariant of M if and only if (∀s ∈ RM) p(s).

∗This work was partially supported by JSPS Kakenhi 26240008.

s0, s1, . . . , sn is called a finite computation of M if and
only if s0 ∈ I and (∀i ∈ {0, . . . , n − 1}) (si, si+1) ∈ T .
Note that each state in any finite computations of M is
a reachable state of M . Many requirements of software
can be formalized as invariants. Since verifications of other
classes of properties often require invariants as lemmas,
invariants are the most fundamental class of properties of
state machines.

While we were formally verifying with ITP that a state
machine formalizing a communication protocol enjoys an
invariant, we happened to find out that the reachable states of
the state machine are classified into six state patterns. From
these patterns, we conjectured several useful lemmas that are
also invariants to complete the formal verification [1]. Al-
though the six state patterns are very useful for conjecturing
lemmas, it took time to obtain them. This might be because
obtaining such state patterns of a state machine is almost
equivalent to conjecturing lemmas or invariants of the state
machine. We would like to obtain such state patterns of a
given state machine with a reasonable amount of efforts. We
utilize human beings’ ability to recognize patterns in various
kinds of data including graphical animations. We believe
that if human beings carefully watch graphical animations
of finite computations of a given state machine, they can
recognize patterns. Besides that, the reachable states of
the state machine can be classified into patterns because
finite computations of the state machine consist of reachable
states of the state machine. The research aims at designing,
implementing a state machine graphical animation tool, and
confirming that human beings can recognize state patterns
in state machine graphical animations.

The rest of the paper is organized as follows. Sect. II
mentions Alternating Bit Protocol (ABP) that is used as a
running example in this paper and how to formalize ABP as
a state machine and describe the state machine in Maude [2],
a rewriting logic-based specification/programming language.
Sect. III describes the motivating example for the research.
Sect. IV describes the design of the tool. Sect. V describes
the implementation of the tool. Graphical animations of a
state machine should be long enough so that human beings
can recognize patterns in them. Thus, Sect. VI describes a
way to generate long computations. Sect. VII reports on an
experiment done with the tool. Sect. VIII mentions some
existing related work and Sect. IX concludes the paper.

II. PRELIMINARIES

Alternating Bit Protocol (ABP) is a simplified version of
Sliding Window Protocol used in TCP, the most important
communication protocol on the globe, such that each win-
dow size is one. ABP consists of a sender and a receiver.
The sender maintains one bit bit1 and a packet pac to
be delivered. The receiver maintains one bit bit2 and a
list list that contains the packets that have been received.
Two unreliable channels chan1 and chan2 are used. Since
they are unreliable channels, their elements may be lost (or
dropped) and duplicated. Fig. 1 shows a snapshot of ABP.
There are eight possible actions in ABP:
• send1: The sender puts a pair 〈bit1, pac〉 into chan1.
• rec1: The sender gets the top element Boolean b from

chan2 if chan2 is not empty. If b 6= bit1, bit1 is
complemented and pac is incremented.

• send2: The receiver puts bit2 into chan2.
• rec2: The receiver gets the top element 〈b, p〉 from

chan1 if chan1 is not empty. If b = bit2, bit2 is
complemented and p is added to list.

• drop1: The top of chan1 is deleted if it is not empty.
• dup1: The top of chan1 is duplicated if it is not empty.
• drop2: The top of chan2 is deleted if it is not empty.
• dup2: The top of chan2 is duplicated if it is not empty.
ABP can be formalized as a state machine MABP. There

are many specification languages in which state machines
can be described. We use Maude [2] to describe state ma-
chines. States can be expressed in various ways. In this
paper, a state is expressed as an associative-commutative
collection of name-value pairs, such as (name1 : value1)
and (name : value2). Name-value pairs are called observ-
able components and associative-commutative collections
are called soups. Thus, a state is expressed as a soup of
observable components. Each state of MABP is characterized
by the six values as shown in Fig. 1. Therefore, each state
of MABP is (chan1: prq) (chan2: bq) (bit1: b1)

(bit2: b2) (pac: p) (list: ps), where prq is a
queue of Boolean-packet pairs, bq is a queue of Booleans,
b1 is a Boolean, b2 is a Boolean, p is a packet, and
ps is a list of packets. For example, chan1 is a name,
prq is a value, and (chan1: prq) is an observable
component. Since (chan1: prq) (chan2: bq) (bit1:

b1) (bit2: b2) (pac: p) (list: ps) is a soup of
observable components, even if the order in which the
observable components appear is changed, such as (chan2:
bq) (bit1: b1) (chan1: prq) (bit2: b2) (pac: p)

(list: ps), it represents the same state. The initial state is
expressed as (chan1: empty) (chan2: empty) (bit1:

false) (bit2: false) (pac: pac(0)) (list: nil).
TABP is described as the eight rewrite rules:
crl [send1]: (chan1: PC) (bit1: B1) (pac: P)
=> (chan1: (PC < B1,P >)) (bit1: B1) (pac: P)
if len(PC) < Len /\ ord(P) < NoP .
rl [rec1]: (chan2: (B BC)) (bit1: B1) (pac: P)

Figure 1. A snapshot of ABP

=> (chan2: BC) (bit1: (if B1 == B then B1 else not B1 fi))
(pac: (if B1 == B then P else next(P) fi)) .
crl [send2]: (chan2: BC) (bit2: B2) => (chan2: (BC B2))
(bit2: B2) if len(BC) < Len .
rl [rec2]: (chan1: (< B,P > PC)) (bit2: B2) (list: L)
=> (chan1: PC) (bit2: (if B2 == B then not B2 else B2 fi))
(list: (if B2 == B then (P L) else L fi)) .
rl [drop1]: (chan1: (PC1 BP PC2)) => (chan1: (PC1 PC2)) .
rl [drop2]: (chan2: (BC1 B BC2)) => (chan2: (BC1 BC2)) .
crl [dup1]: (chan1: (PC1 BP PC2))

=> (chan1: (PC1 BP BP PC2)) if len(PC1 BP PC2) < Len .
crl [dup2]: (chan2: (BC1 B BC2)) => (chan2: (BC1 B B BC2))

if len(BC1 B BC2) < Len .

where PC, PC1 and PC2 are Maude variables of Boolean-
packet pair queues, BC, BC1 and BC2 are ones of Boolean
queues, B, B1 and B2 are ones of Booleans, P is one of
packets, and Len and NoP are natural numbers. The function
len takes a queue and returns the number of its elements.
And the function ord takes a packet pac(n), where n is
a natural number, and returns n as an ordinal of the packet.

III. MOTIVATING EXAMPLE

When we were formally verifying that ABP satisfies a
desired property, we found that RMABP

is classified into six
patterns shown in Fig. 2. From the six state patterns, we were
able to conjecture several useful lemmas to complete the
formal verification. For example, SP3 allows us to conjecture
the following lemma:

if chan2 contains two Booleans b1 and b2 in a
raw such that b1 6= b2 and b1 is closer to the top,
then each Boolean b appearing in chan2 later than
b2 is the same as b2 and b2 is the same as bit2;

and SP6 allows us to conjecture the following lemma:
if chan1 contains two pairs 〈b1, p1〉 and 〈b2, p2〉
in a raw such that 〈b1, p1〉 6= 〈b2, p2〉 and 〈b1, p1〉
is closer to the top, then each pair 〈b, p〉 appearing
in chan1 later than 〈b2, p2〉 is the same as 〈b2, p2〉
and 〈b2, p2〉 is the same as 〈bit1, pac〉.

If it is possible to find out such state patterns of a given state
machine with a reasonable amount of effort, this could give
non-trivial contributions to systems verification based on
ITP because such state patterns help human users conjecture
useful lemmas.

Human beings are very good at recognizing patterns
in various kinds of data, such as sounds, still images,
and graphical animations. If human beings carefully watch
graphical animations of finite computations of a state ma-
chine, they could recognize underlying patterns from which

Figure 2. Six state patterns of RMABP

they could conjecture useful lemmas. It would require much
fewer efforts and less time to watch graphical animations
of finite computations of a state machine M than to try to
formally prove that M enjoys invariants so as to conjecture
lemmas. This has motivated us to develop the state machine
graphical animation tool. We do not try to create anything
that imitates human beings’ ability to recognize patterns but
try to make the best use of this ability so as to conjecture
lemmas in this research1.

IV. DESIGN

If the state machine graphical animation tool deals with
state machines internally, we need to design an internal rep-
resentation of state machines or adopt some existing ones. It
would be clumsy to ask human users to write state machines
in such an internal representation. Otherwise, we need to
design a specification language for state machines or adopt
some existing ones. If so, it would be necessary to translate
state machines written in a specification language into those
written in an internal representation. We should develop
multiple translators for multiple specification languages to
make it possible for any state machines to be graphically
animated. Since many specification languages have been
and would be proposed, however, it would not be smart to
develop a translator for each specification language because
it is not a trivial task to develop even one translator for one
specification language.

We have not designed the state machine graphical anima-
tion tool such that it deals with state machines internally but
designed it such that it basically takes a finite computation
of a state machine. This is because tools, such as model
checkers, that can deal with state machines can generate
finite computations of state machines. We need to fix how to
represent each state of state machines and finite sequences
of states. It would be much easier, however, to transform
some different state representations to that used for the
state machine graphical animation tool than to translate

1Our group has also been attempting [3] to automatically extract state
patterns of a given state machine with Inductive Logic Programming, a
combination of machine learning and logic programming.

state machines written in a specification language into those
written in another one. Besides, it would be straightforward
to transform some different representations of finite state
sequences to that used for the state machine graphical
animation tool once different state representations have been
transformed into that used for the tool.

If each state in a finite computation of a state machine is
graphically represented, the finite computation is essentially
a film of a graphical animation of the state machine. There-
fore, it would suffice to allow human users to intuitively
design graphical state representations (or images or pictures)
of state machines.

It would be possible to make a clear correspondence
between term (or text) state representations and graphical
state representations. This correspondence is treated as part
of the input data to the state machine graphical animation
tool, together with a finite computation of a state machine.
Although human users are supposed to write such a corre-
spondence, we do not think that this is a non-trivial piece
of code (or programs).

In our design of the state machine graphical animation
tool, a finite computation of a state machine can be regarded
as a film. Accordingly, the speed of the animation can be
adjusted by changing (redrawing) the current state to the
successor state in a specified amount of time, such as 10ms
and 50ms.

If we try to generate all finite computations whose length
is some specific bound and the bound is large enough, we
quickly encounter the notorious state explosion problem.
If the number of packets to be delivered is 10 and the
capacity of each channel is 10, then the Maude search
command could exhaustively traverse RMABP

up to depth
37 but encountered the state explosion problem when the
depth was 38. It would be unnecessary to generate all
finite computations up to some shallow depth but necessary
to generate some long finite computations. It would be
inadequate to generate computations in which some specific
state transitions are only taken. We will describe how to
generate adequate long computations later.

V. IMPLEMENTATION

A. Drawing state machine pictures

It would be possible to implement the tool from scratch,
but take a lot of effort as well as much time to do so. We
would like to make the tool available in as many platforms
and/or environments as possible. We would like to make
it extensible as well as maintainable as much as possible.
Therefore, it would not be preferable to implement it from
scratch if there exist some technologies available to achieve
our goal. One of such technologies is Scalable Vector Graph-
ics (SVG) used to define graphics for the Web. SVG has
several methods for drawing paths, boxes, circles, texts, and
graphic images. It is useful to use SVG for drawing pictures
of state machines. Since SVG is supported by almost all

Figure 3. Set id for the svgText of bit2

Figure 4. A picture of MABP

major web browsers, it makes it possible to make the tool
available in as many platforms and/or environments as pos-
sible. Several tools with which SVG animations can be made
have been developed. One of them is DRAW-SVG [4], which
we have used in this research. DRAW-SVG is a free online
drawing application for designers and developers, making
it possible to create fully standard compliant SVG. We use
it as an integrated drawing tool within our website at the
link https://tamntt.bitbucket.io/Research/
GraphicalAnimation/ by using API based on Mozilla
jsSchannel. The display of DRAW-SVG is supported by all
currently available browsers except for Internet Explorer.

Human users can use DRAW-SVG to draw, save, edit,
and open any SVG pictures of any state machines easily
and visually. After drawing the picture of a state machine,
the user needs to edit properties for texts on the picture so
that the observable components of the state machine can
appear on the picture when the state machine is animated.
As clicking a text on the picture and choosing the icon of
properties, a pop-up will be displayed for editing properties.
In this pop-up, the name as an ID for the text of an
observable component (name : value) is set for the text so
that the value can be displayed at the place where the text
is located. The ID will be used for mapping it to the values
whose name is name appearing in an input data when we
run the graphical animation tool. For example, Fig. 3 shows
bit2 is set as the ID of the observable component (bit2 : b2)
so that the Boolean b2 is displayed at the designated place
on a state machine picture. Fig. 4 shows a picture of MABP

drawn with the tool.

B. Input file format

The graphical animation tool does not deal with state
machines themselves internally. Instead, what is fed into the

tool is basically a finite computation of a state machine. The
input file format is described.

An example input file of MABP is as follows:

###keys
chan1 chan2 bit1 bit2 pac list
###textDisplay
chan1::::REV::::<_,_>++++empty
###states
(chan1: empty chan2: empty bit1: false bit2: false
pac: pac(0) list: nil) || (chan1: (< false,pac(0) > empty)
chan2: empty bit1: false bit2: false pac: pac(0)
list: nil) || (chan1: empty chan2: empty bit1: false
bit2: true pac: pac(0) list: (pac(0) nil)) || (chan1: empty
chan2: (true empty) bit1: false bit2: true pac: pac(0)
list: (pac(0) nil)) || chan1: empty chan2: empty bit1: true
bit2: true pac: pac(1) list: (pac(0) nil)

There are three segments in an input file as follows:
• keys: This is a list of keys which are names of ob-

servable components in a state. These keys are used
as IDs described in the last sub-section. The order in
which the keys appear must be the same as the order in
which the corresponding observable components appear
in each state.

• textDisplay: This part specifies how the value of an
observable component is displayed. When displaying
a queue, if nothing is specified, it is displayed hori-
zontally and its top appears left most. There may be
the case, however, where its top should appear right
most. Some values, such as stacks, may have to be
displayed vertically instead. For example, The value of
(chan1 : prq) should be displayed such that its top
appears right most. The format used in this part is as
follows: key::::option:::regex(0)++++...
++++regex(i). The format consists of three parts:
key, option and regexs. A key appearing in the key
segment is written in the key part. REV, VER or
VER-REV is written in the option part. REV spec-
ifies a collection, such as queues and lists, is dis-
played such that its top appears right most, VER
specifies a collection, such as stacks, is displayed
vertically such that its top appears top most, and
VER-REV specifies a collection is displayed verti-
cally such that its top appears bottom most. A list
of regular expressions is written in the regexs part.
For example, the textDisplay segment of MABP is as
follows: chan1::::REV::::<_,_>++++empty.
Two regular expressions <_,_> and empty are
written in the regexs part. They match texts,
such as <false,p(0)> and empty, appearing
in the observable component (chan1: prq). If
the value of (chan1: prq) is <false,p(0)>
<true,p(1)> empty, then what is displayed as the
value of (chan1: prq) is empty <true,p(1)>
<false,p(0)> because of REV.

• states: This is a finite computation of a state machine,
namely a finite sequence of states. The sign || is a
separator used to distinguish adjacent states.

Figure 5. A step running of an animation

C. Running tool

After getting a drawn picture of a state machine and
importing a prepared input file, the tool can run to play
a graphical animation of the state machine. The tool allows
human users to adjust the duration of the speed of animation.
The unit of duration is millisecond. The smaller the duration
is, the faster the animation is played. Animations can be
played step by step in addition to that they can be played
automatically from the beginning to the end. When an
animation is played step by step, we can observe each
state transition graphically. For example, Fig. 5 shows a state
transition (done by rec2) from state 32 to state 33 in a finite
computation of MABP.

D. The algorithm of graphical animation
The algorithm used in the tool is as follows:

Func: animation(svg, seqStates, keys, textDisplay, duration)
for(i = 0, i < size(seqStates), i+1)
state = states[i];
preState = if i > 0 then seqStates[i-1] else state;
for(j = 0, j < size(keys), j+1)
key = keys[j]; value2 = state[key];
value1 = preState[key];
svgText = svg.selectById(key); attr = empty;
if(value1 != value2) attr is changed red color for text.
else attr is changed black color for text.
setTransition(svgText, attr, value2, duration,

textDisplay[key])

The algorithm has been implemented in JavaScript. The
parameters keys, textDisplay, and states are set the
three segments in an input file, respectively. The parameter
duration is a value of animation duration that has been
set by a human user. The parameter svg is an object of the
SVG picture. When switching the picture of the previous
state s with the picture of the successor state s′, the values
value1 and value2 of each observable component in s
and s′ are compared. The SVG element svgText that will
be displayed as the value of the observable component in
s′ can be obtained by svg.selectById(key) where
key is the name of the observable component. If value1
and value2 are different, red is used as the color attribute
for svgText. Otherwise, black is used. Then, function
setTransition is used to display svgText as the value
of the observable component in s′.

E. Filtering states

Observing graphical animations of a state machine may
allow human users to recognize some relations among

Figure 6. Examples of constraints along with regex and conditions

values of some observable components, such as the
equivalence of bit1 and bit2 of the ABP. It would be useful
to select the states among the ones in a given input file such
that some conditions are fulfilled and display their graphical
representations. The tool allows human users to define
such a condition. The format of a condition is as follows:
(state[’key1’] op1 state[’key2’]) op2
(state[’key3’] op4 ’value’) . . . , where key1,
key2, and key3 are names of observable components
in states and keys appearing in the key segment of
an input file, op1, op2, and op3 are JavaScript
comparison and logical operators, and value is a
value. An example (called Cond1) of the conditions is as
follows: (state[’bit1’] == state[’bit2’] &&
state[’chan1’] != ’empty’ && state[’chan2’]
!= ’empty’). This condition can select the states such
that bit1 equals bit2, chan1 is not empty, and chan2
is not empty. Let Cond2 be the condition obtained by
changing state[’bit1’] == state[’bit2’] with
state[’bit1’] != state[’bit2’] in Cond1.

In addition to the condition that has been just described,
it is possible to write constraints on the value of each
observable component if the value is a collection, such
as a list and a queue. The format of a constraint is as follows:
key::::regex(1)++++regex(2)++++...++++...
regex(n)::::cond::::opt, where key is the name
of an observable component, regex(1), regex(2),
. . . , regex(n) are regular expressions used to
detect elements in the value, cond is a condition
to be satisfied by the elements, and opt is either
NONE or REPEAT. Let the value of the observable
component be true true true false false false
empty. If opt is NONE, the value as it is, namely
true true true false false false empty
is displayed. If opt is REPEAT, its abbreviation true
. . .true false . . .false is displayed. Even though two
values are different but their abbreviations are the same, the
two values are treated as equals if opt is REPEAT. Eight
examples (called Consti for i = 1, 2, . . . , 8, respectively)
of the constraints are as Fig. 6, where topElement and
bottomElement refer to the top and bottom of the value
(the queue), respectively.

Given an input file in which the keys and textDisplay
segments are the same as the input file shown earlier and
the states segment is a finite computation (called FC150)

Figure 7. A state that satisfies Cond1, Const4, and Const6 (left). A state
pattern (right)

that consists of 150 states, when Cond1, Const4, and Const6
are used and we ask the tool to find state patterns, the tool
finds 18 occurrences of states that satisfy Cond1, Const4,
and Const6. Since some states occur more than once in the
finite computation, the tool also finds seven different states
in it. One of them is shown in Fig. 7.

F. Describing and displaying state patterns

For each of the states selected among the ones in
a given input file such that some conditions and/or
constraints are fulfilled, human users may recognize a
state pattern. The tool allows human users to describe
a state pattern and display it graphically. For example,
from a state shown in the left picture in Fig. 7, one
may recognize the state pattern written as follows:
(chan1: < true,pac(i) >...< true,pac(i) >

< false,pac(i+1) >...< false,pac(i+1) >

chan2: false...false bit1: false bit2: false

pac: pac(i+1) list: pac(i) pac(i-1)...)

The content of chan1 should be displayed in the re-
verse order. The tool allows us to specify it as follows:
chan1::::REV::::<_,_>++++\.\.\. Then the tool
displays the state pattern shown in the right picture in Fig. 7
that is essentially equivalent to SP6 shown in Fig. 2.

VI. GENERATION OF LONG COMPUTATIONS

Maude provides metaprogamming functionalities. A
metaprogram is a program that takes programs as inputs and
performs some useful computations. It is necessary to deal
with a Maude specification (or program) of a state machine
M to generate a long computation of M . Therefore, we have
written a metaprogram that takes a Maude specification of
M as one input to generate a long computation of M . The
algorithm to generate a long computation of M is as follows:
genSeq(Mod,S,B,R)
seq := S; len := 1;
while len < B
succs := findAllSuccs(Mod,S);
if succs = empty then break;
s’ := selectNextTerm(succs,R rem length(succs));
seq.add(s’); len = len + 1;
R = random(R quo 100000);

return seq;

in which Mod is the Maude specification of M , S is the first
state of the computation, B is a bound that is the length of
the computation being generated, and R is a seed of random
numbers. As R indicates, the successor state of a state will

be randomly chosen so that various different computations
can be generated. The function findAllSuccs takes Mod,
S representing a state and returns a collection of successor
states of S obtained by applying each of the rewrite rules to
S if possible. S may be a deadlock state, namely that it may
not have any successor states. If that is the case, the empty
collection is returned. The function selectNextTerm
will get a collection of successor states and a number as an
index to return the next state in this collection at the index
position. The function random generates a pseudo-random
number based on the given seed. Based on the pseudo-
random number generated, the function selectNextTerm
will return the next state. Since modules, terms, etc. are
expressed as Maude terms, Maude makes it possible to
write metaprograms in Maude as ordinary programs (or
specifications) in Maude.

What is returned by the function genSeq is a finite com-
putation but the computation is represented as a meta-term.
Hence, such a meta-represented term should be converted to
another representation that can be used for the tool. Then,
we have defined the function downTermList as follows:
op nil : -> ListSys [ctor] .
op _||_ : Sys ListSys -> ListSys [ctor] .
op downTermList : TermList -> ListSys .
eq downTermList(empty) = nil .
eq downTermList(TE) = downTerm(TE, nil) .
eq downTermList((TE,TList)) = downTerm(TE, nil)

|| downTermList(TList) .

where TE and TList are Maude variables of sorts
Term and TermList. ListSyst is the sort of finite
computations that can be used for the tool. The function
downTerm takes a meta-represented term and convert it
into an object-level representation of the term. For example,
we can generate the finite computation FC150 of MABP

whose length is 150 by reducing the following term:
downTermList(genSeq(upModule(’ABP,false)
,upTerm(init),5,150)), where the function
upModule takes a module name as a quoted term,
such as ’ABP where ABP is the name of a module in which
ABP is specified, and converts it into a meta-represented
term of the module and the function upTerm takes a term
and converts it into a meta-represented term of the term.
The way to generate finite computations can generate finite
computations up to about 100000 for MABP.

VII. EXPERIMENT

We have used the finite computation FC150 of MABP.
Observing the animation from FC150 has made us find
out some of the six state patterns shown in Fig. 2. Even
if we may not find out any interesting state patterns, we
can ask the tool to look for the states in the animation that
satisfy conditions and/or constraints. If some satisfied states
are similar each other, they will be clustered into one state
representation as a state pattern. For example, if we have
satisfied states such as A, B, A, C, D, B, . . ., the tool will

Figure 8. Experimental results with FS150

Figure 9. Graphical animation of a counterexample of MABP

group same states, and display different states such as A,
B, C. Thus, we can define some conditions to filter satis-
fied states to check or confirm some predicted patterns or
characteristics, and reduce the amount of time for observing
animations. If the tool refutes guessed characteristics, we
should correct them. We have used Condi for i = 1, 2 and
Constj for j = 1, 2, . . . , 8 as defined conditions and con-
straints, respectively. Fig. 8. shows the experimental results
in which Cndi, Cstj,k, #OS, #DSP, SP and SPj(,k) stand
for Condi, Constj and Constk, the number of occurrences
of states, the number of different states or state patterns,
state patterns, and SPj (and SPk), respectively. The tool
supports us to get better understandings and perceive some
useful characteristics. By observing graphical animations of
state machines, and selecting states that satisfy conditions
or constraints, we found state patterns shown in Fig. 2. For
example, the tool found 37 occurrences of the states that
satisfied Cond1, Const2 and Const6 among which there were
11 different state patterns. Taking a close look at those 11
different state patterns made us recognize SP1 and SP5. The
tool reveals that there is no state that satisfies some condition
and constraints. Although the tool does not prove it, this
information is crucial.

VIII. RELATED WORK

Most formal specification languages, such as Z, B method
and Event-B, are not executable, although some, such as

VDM and VDM++, are semi-executable. Therefore, some
researches have been carried out, making formal speci-
fications written in such languages run, for example, by
translating sub-sets of such languages into programming
languages. Running formal specifications is called specifi-
cation animation. Specification animation makes it possible
to help human users get better understandings of formal
specifications. Therefore, specification animation has been
used to improve some other activities, such as refinement [5],
inspection and formal specification construction [6], [7], and
software monitoring [8]. Although specification animation
does not necessarily mean visual and graphical animations,
some tools make it possible to play graphical animations [7].
The formal specification language we have used is Maude.
Since Maude is executable, we do not need to develop any
translators.

Maude generates a counterexample if any, but such a
counterexample is not necessarily the shortest. Thus, we
have written a meta-programming to generate a counterex-
ample, which can be fed into the tool. By animating some
counterexamples, users can get better understandings of
them. The tool is able to deal with a counterexample gen-
erated by Maude LTL model checker [9]. To displaying the
graphical animation of a counterexample, a part ###loop,
which contains a sequence of states in the loop, is appended
to the input file at the last. Fig. 9 shows the six states
graphically represented by the tool. The six states appear in
a shortened version of the counterexample. The tool helps
human users comprehend counterexamples better, but better
understandings of counterexamples require to understand
formal specifications better. Thus, one piece of our future
work is to investigate the relation between our way of using
graphical animations and the existing techniques, such as
[6], [7], and [8].

Some model checkers, such as Alloy and PAT, are
equipped with graphical animations of scenarios, such as
counterexamples. Such graphical animations of counterex-
amples help human users get better understandings of the
reason why the counterexamples occur. Such model check-
ers, however, do not allow human users to draw pictures
used for graphical animations. Our tool allows human users
to design pictures (or flames) of animations. Therefore,
intuitively understandable pictures could be used, helping
human get better understandings of counterexamples and
realize why they occur. Moreover, the layout of the places
where each observable value is displayed can be decided by
human users. Alloy and PAT do not allow users to adjust
the speed of animations and select some states that satisfy
some conditions and/or constraints from a counterexample.

A GUI for Maude-NPA [10] is a security protocol analysis
tool was implemented in Maude. In verification process,
the GUI for Maude-NPA animates completely the Maude-
NPA search tree generation process. Each state in the tree
is displayed as a textual information and a graphical rep-

Figure 10. The picture of MMCS and four animated states

resentation. Our tool is independent from Maude and can
graphically animate any finite state sequence and any coun-
terexample that consists of a finite state sequence leading a
loop in which a finite state sequence repeats forever if they
can be converted into what can be fed into the tool. Another
piece of our future work is to apply the combination of
Maude and the tool or the tool to other non-trivial cases.

Many researchers have been convinced that (graphical)
specification animation can help human users get better
understandings of formal specifications, but to the best of
our knowledge none of them have tried to utilize graphical
specification animation for conjecturing lemmas in interac-
tive theorem proving.

IX. CONCLUSION

We have developed the graphical animation of state ma-
chines tool that supports users to recognize some useful
state patterns which can be used for conjecturing lemmas
in ITP. Besides animating some long sequences of states,
the tool also allows users to select some states that satisfy
some conditions and/or constraints. Formally verifying that
a system enjoys an invariant with ITP, a human user first
repeatedly conducts case splitting tasks based on come
conditions and/or constraints and then may reach a case in
which he/she needs to use some lemmas. The human users
can use those conditions and/or constraints to make the tool
filter out states in a finite computation. By this way, users
can figure out useful lemmas used for theorem proving.

The experiment demonstrates the tool could help human
users find out interesting state patterns. We also analyzed

the MCS list-based queuing lock (MCS protocol), a mutual
exclusion protocol used in many Java virtual machines, and
some variants with Maude and the state machine graphical
animation tool. Fig. 10 shows the picture of MMCS and
some states in animation.

A piece of our future work is to apply the combination
of Maude and the tool or the tool to other non-trivial cases,
and to recognize useful patterns from several graphically
animated computations, conjecture useful lemmas from the
animated computations and formally verify MCS protocol,
and Paxos that is a protocol used for solving consensus
in asynchronous systems, enjoys some properties. We will
tackle with the tool some protocols or systems such that
we have not formally verified that they enjoy some invari-
ants, finding out interesting state patterns and conjecturing
lemmas from those state patterns to complete the formal
verification.

REFERENCES

[1] K. Ogata, “Lecture 8 Analysis of Alternating Bit Protocol 2,”
Sinaia Shcool on Formal Verification of Software Systems
http://www.jaist.ac.jp/˜kokichi/class/SinaiaSchoolFVSS0803,
2008.

[2] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and C. Talcott, All About Maude, ser. LNCS
4350. Springer, 2007.

[3] D. T. Ho, M. Zhang, and K. Ogata, “Case studies on extract-
ing the characteristics of the reachable states of state machines
formalizing communication protocols with inductive logic
programing,” in ILP (Late Breaking Papers), 2015, pp. 33–47.

[4] J. Liard, “Draw SVG website,” http://www.drawsvg.org/,
2015.

[5] S. Hallerstede, M. Leuschel, and D. Plagge, “Validation
of formal models by refinement animation,” Sci. Comput.
Program., vol. 78, no. 3, pp. 272–292, 2013.

[6] S. Liu, “Validating formal specifications using testing-based
specification animation,” in FormaliSE@ICSE 2016, 2016,
pp. 29–35.

[7] M. Li and S. Liu, “Integrating animation-based inspection into
formal design specification construction for reliable software
systems,” IEEE Trans. Reliability, vol. 65, no. 1, pp. 88–106,
2016.

[8] H. Liang, J. S. Dong, J. Sun, and W. E. Wong, “Software
monitoring through formal specification animation,” ISSE,
vol. 5, no. 4, pp. 231–241, 2009.

[9] T. T. T. Nguyen and K. Ogata, “A way to comprehend coun-
terexamples generated by the Maude LTL model checker,” in
SATE. IEEE, 2017 (to appear).

[10] S. Santiago, C. L. Talcott, S. Escobar, C. A. Meadows, and
J. Meseguer, “A graphical user interface for Maude-NPA,” in
9th PROLE, ser. ENTCS 258. Elsevier, 2009, pp. 3–20.

