
Graphically perceiving characteristics of the
MCS lock and model checking them?

Tam Thi Thanh Nguyen and Kazuhiro Ogata

School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)

{tamnguyen,ogata}@jaist.ac.jp

Abstract. The MCS list-based queuing lock (MCS) is a mutual exclu-
sion protocol whose variants have been used in Java virtual machines.
MCS is specified as a state machine in Maude, a rewriting logic-based
computer language and system. We have developed a tool (called SMGA)
that tales a finite computation generated from a state machine and
displays its graphical animations. MCS is used to describe how such
graphical animations help human beings perceive characteristics of the
state machine of MCS. Such characteristics can be confirmed by Maude
model checking facilities. The characteristics graphically perceived and
confirmed by model checking could be used as lemmas to theorem prove
that MCS enjoys some desired properties. SMGA can also display graph-
ical animations of counterexamples presented by the Maude LTL model
checker.
Keywords: graphical animation, Maude, model checking, mutual exclu-
sion protocols, state machine

1 Introduction

State machines can be used as mathematical models of various systems and their
properties can be used to formalize systems requirements. Thus, systems verifi-
cation can be conducted as formal verification of state machine properties. Two
major systems verification techniques are model checking and theorem proving.
Model checking can be automatically conducted but cannot basically deal with
infinite-state systems1. Theorem proving can directly deal with infinite-state
systems but requires human interaction. One of the most intellectual tasks in
theorem proving is conjecturing lemma

We have developed a tool [3] that takes a finite computation of a state ma-
chine and displays its graphical animation. The tool (called the state machine
graphical animation tool, or the SMGA tool, or simply SMGA) mainly aims at

? This work was partially supported by JSPS KAKENHI Grant Number 26240008.
1 If you find a good abstraction that converts an infinite-state system to a finite-state

one and preserves the negation of a property concerned, the infinite-state system
can be formally verified by model checking the finite-state one [1, 2], although you
need to prove the preservation of the negated property by the abstraction.

helping human beings perceive characteristics appearing in state machine graph-
ical animations and conjecture lemmas that could be used to theorem prove state
machine properties. The MCS list-based queuing lock (the MCS protocol, the
MCS lock, or simply MCS) [4] is a mutual exclusion protocol whose variants
have been used in Java virtual machines. MCS is specified as a state machine
in Maude [5], a rewriting logic-based computer language equipped with model
checking facilities (the search command and the LTL model checker). SMGA
takes finite computations from the Maude specification of MCS and displays
their graphical animations. This paper describes how such graphical animations
help human beings perceive characteristics of the state machine of MCS ap-
pearing in the animations. The Maude search command can be used to confirm
the guessed characteristics by exhaustively traversing the Maude specification of
MCS. If Maude refutes some, we can revise them based on the counterexamples
generated by Maude. Characteristics perceived by human beings in graphical an-
imations and confirmed by model checking would be likely to be able to be used
as lemmas for theorem proving. The paper also describes model checking exper-
iments that MCS enjoys the mutual exclusion property with the Maude search
command and the lockout freedom property with the Maude LTL model checker.
Two variants of MCS in which a complex atomic instruction comp&swap is not
used are analyzed with the LTL model checker as well. One variant does not enjoy
the lockout freedom property and then a counterexample is given by the model
checker. SMGA can also generate a graphical animation of a counterexample.

The rest of the paper is organized as follows. Sect. 2 describes some pre-
liminaries, such as Kripke structures and LTL. Sect. 3 describes MCS. Sect. 4
describes Maude and how specify MCS in Maude. Sect. 5 reports on the case
study in which MCS and two variants have been analyzed with SMGA and
Maude. Sect 6 mentions some existing related work, and Sect 7 finally concludes
the paper.

2 Preliminaries

Let S be a set and π be an infinite sequence e0; ...; ei; . . . of S, where each ei ∈ S,
and then π(i) = ei (the ith element in π) and πi = ei; . . . (the ith suffix obtained
by deleting the first i elements from π) for each natural number i. Let e0; ...; en be
a non-empty finite sequence of S, and then (e0; ...; en)∞ = e0; ...; en; e0; ...; en; . . .
(the infinite sequence in which the finite sequence repeats infinitely often). Let
U be a universal set of symbols.

A Kripke structure (KS) K is a 5 tuple 〈S, I, P, L, T 〉, where S is a set
of states, I ⊆ S is the set of initial states, P ⊆ U is a set of atomic state
propositions, L is a labeling function whose type is S → 2P , and T ⊆ S × S is
a total binary relation. An element (s, s′) ∈ T may be written as s → s′ and
referred as a state transition.

A path of K is an infinite sequence s0; . . . ; si; si+1; . . . of S such that
(si, si+1) ∈ T for each natural number i. A computation of K is a path π of
K such that π(0) ∈ I. Let P be the set of all paths of K and C be the set of all

2

computations of K. A finite prefix s0; . . . ; sn of a computation (or path) of K is
called a finite computation (or path) of K. The syntax of a formula ϕ in Linear
Temporal Logic (LTL) for K is ϕ ::= > | p | ϕ ∧ ϕ | © ϕ | ϕU ϕ, where p ∈ P .
Let F be the set of all formulas in LTL for K.

An arbitrary path π ∈ P of K and an arbitrary LTL formula ϕ ∈ F of K,
K,π |= ϕ is inductively defined as K,π |= >, K,π |= p if and only if p ∈ L(π(0)),
K,π |= ¬ϕ1 if and only if K,π 6|= ϕ1, K,π |= ϕ1 ∧ ϕ2 if and only if K,π |= ϕ1

and K,π |= ϕ2, K,π |= ©ϕ1 if and only if K,π1 |= ϕ1, and K,π |= ϕ1 U ϕ2

if and only if there exists a natural number i such that K,πi |= ϕ2 and for all
natural numbers j < i, K,πj |= ϕ1, where ϕ1 and ϕ2 are LTL formulas. Then,
K |= ϕ if and only if K,π |= ϕ for each computation π ∈ C of K.

The temporal connectives© and U are called the next operator and the until
operator, respectively. The other logical and temporal connectives are defined
as usual as follows: ⊥ , ¬>, ϕ1 ∨ ϕ2 , ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 ⇒ ϕ2 , ¬ϕ1 ∨ ϕ2,
♦ϕ , > U ϕ, �ϕ , ¬(♦¬ϕ), and ϕ1 ϕ2 , � (ϕ1 ⇒ ♦ϕ2). The temporal
connectives ♦, � and are called the eventually operator, the always operator
and the leadsto operator, respectively.

There are multiple possible ways to express states. In this paper, a state is
expressed as an associative-commutative collection of name-value pairs, where
a name may have parameters. Associative-commutative collections are called
soups, and name-value pairs are called observable components. That is, a state
is expressed as a soup of observable components. The juxtaposition operator
is used as the constructor of soups. Let oc1, oc2, oc3 be observable components,
and then oc1 oc2 oc3 is the soup of those three observable components. Since
the order is irrelevant because of associativity and commutativity, oc1 oc2 oc3 is
the same as some others, such as oc3 oc2 oc1. For soups ocs1, ocs2 of observable
components, ocs1 ⊆ ocs2 if and only if there exists a soup ocs3 of observable
components such that ocs1 ocs3 = ocs2, namely that there exists ocs1 in ocs2,
where each ocsi for i = 1, 2, 3 may be empty or a single observable compo-
nent. Examples of observable components are (glock: nop) and (pc[p1]: rs),
where glock and pc[p1] are names, nop and rs are values, and p1 is a pa-
rameter of the name pc[p1]. An example of a soup of observable components
is (glock: nop) (pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs). This represents
(actually partially) a state in which there are three processes each of which is
located at rs and there is one global variable glock that is shared by the three pro-
cesses and whose value is nop. Since the soup is associative and commutative,
even if some observable components are swapped, for example (pc[p2]: rs)

(pc[p1]: rs) (glock: nop) (pc[p3]: rs), it represents the same state.

3 MCS List-based Queuing Lock

The MCS list-based Queuing lock (MCS protocol) has been invented by John
M. Mellor-Crummey and Michael L. Scott [4]. Variants of MCS protocol have

3

been used in Java virtual machines, and therefore the inventors were awarded
the 2006 Edsger W. Dijkstra Prize in Distributed Computing2.

A pseudo-code of MCS protocol for each process p is as follows:

rs: ”Remainder Section”
l1: nextp := nop;
l2: predp := fetch&store(glock, p);
l3: if predp 6= nop {
l4: lockp := true;
l5: nextpredp

:= p;
l6: repeat while lockp; }
cs: ”Critical Section”
l7: if nextp = nop {
l8: if comp&swap(glock, p,nop)
l9: goto rs;
l10: repeat while nextp = nop; }
l11: lockednextp := false;
l12: goto rs;

There is one global variable glock shared by all processes participating in MCS
protocol. Its type is process IDs (or Pid). Initially, glock is nop, a dummy process
ID. Each process p maintains three local variables nextp, lockp and predp whose
types are Pid, Bool and Pid, respectively. Initially, nextp, lockp and predp are
nop, false and nop, respectively. nextp is used to construct a global queue of pro-
cesses (or process IDs). Basically, nextp refers to the next element of the queue
if p is in the queue. Since enqueuing an element into the queue and dequeuing
the queue are not atomically done, however, nextp may be nop even though p
is not the bottom element of the queue. predp refers to the previous element of
the queue while p is being put into the queue. lockp is the local lock on which
process p is spinning while lockp is true to wait for entering the critical section.
glock basically refers to the bottom element if the queue is not empty. Since the
two basic operations to the queue are not atomic, however, glock may not refer
to the real bottom element while some process IDs are being put into the queue.

To safely conduct the two basic operations to the queue non-atomically, two
atomic operations are used: fetch&store and comp&swap. fetch&store(x, v) does
the following atomically: tmp := x, x := v, and tmp is returned, where tmp
is a temporary variable. comp&swap(x, v1, v2) does the following atomically: if
x = v1, then x := v2 and true is returned; otherwise, false is returned.

4 Maude

Maude is a rewriting logic-based computer language and system that is
equipped with many functionalities, among which are model checking and meta-
programming. Maude is one of the direct successors of OBJ3, the most famous al-
gebraic specification language and system mainly designed by Joseph A. Goguen.

2 https://www.podc.org/dijkstra/2006-dijkstra-prize/

4

Therefore, Maude allows users to write specifications very flexibly. For example,
associative and/or commutative binary operators can be freely used in specifica-
tions, making it possible to specify complex concurrent and distributed systems
very succinctly.

As described, MCS protocol is formalized as a state machine whose states are
expressed as soups of observable components. When there are three processes, a
state is expressed as

(glock: G) (pc[p1]: L1) (pc[p2]: L2) (pc[p3]: L3) (next[p1]: P1)

(next[p2]: P2) (next[p3]: P3)(lock[p1]: B1) (lock[p2]: B2) (lock[p3]: B3)

(pred[p1]: Q1) (pred[p2]: Q2) (pred[p3]: Q3)

where G, Pi and Qi for i = 1, 2, 3 are process IDs, Li for i = 1, 2, 3 are locations,
such as rs, l1 and cs, and Bi for i = 1, 2, 3 are Booleans. Initially, G, each Pi and
each Qi are nop, each Li is rs, each Bi is false. The initial state will be referred
as init.

The state transitions are described in terms of rewrite rules as follows:

rl [want] : (pc[P]: rs) => (pc[P]: l1) .

rl [stnxt] : (pc[P]: l1) (next[P]: Q) => (pc[P]: l2) (next[P]: nop) .

rl [stprd] : (glock: Q) (pc[P]: l2) (pred[P]: Q1)

=> (glock: P) (pc[P]: l3) (pred[P]: Q) .

rl [chprd] : (pc[P]: l3) (pred[P]: Q)

=> (pc[P]: (if Q == nop then cs else l4 fi)) (pred[P]: Q) .

rl [stlck] : (pc[P]: l4) (lock[P]: B) => (pc[P]: l5) (lock[P]: true) .

rl [stnpr] : (pc[P]: l5) (pred[P]: Q) (next[Q]: Q1)

=> (pc[P]: l6) (pred[P]: Q) (next[Q]: P) .

rl [chlck] : (pc[P]: l6) (lock[P]: false) => (pc[P]: cs) (lock[P]: false) .

rl [exit] : (pc[P]: cs) => (pc[P]: l7) .

rl [rpnxt] : (pc[P]: l7) (next[P]: Q) => (pc[P]: (if Q == nop then l8

else l11 fi)) (next[P]: Q) .

rl [chglk] : (glock: Q) (pc[P]: l8) => (glock: (if Q == P then nop

else Q fi)) (pc[P]: (if Q == P then l9 else l10 fi)) .

rl [go2rs] : (pc[P]: l9) => (pc[P]: rs) .

crl [rpnxt2] : (pc[P]: l10) (next[P]: Q) => (pc[P]: l11)

(next[P]: Q) if Q =/= nop .

rl [stlnx] : (pc[P]: l11) (next[P]: Q) (lock[Q]: B)

=> (pc[P]: l12) (next[P]: Q) (lock[Q]: false) .

rl [gotrs] : (pc[P]: l12) => (pc[P]: rs) .

where want, stnxt, etc. are the labels of the rewrite rules.

5 Analysis of MCS Protocol

5.1 Invariant Model Checking with Search

For a state machine specification in Maude, a state S, a pattern P and a condition
C, the Maude search command exhaustively traverses the reachable states from
S to find states that match P and satisfy C:

5

search [N] in Mod : S =>* P such that C .

where N is a natural number. The search command tries to find at most N
solutions. Note that a solution is basically a state A that matches P and satisfies
C, but since there may be more than one substitution σ such that σ(P) = A, there
may be more solutions than the number of such states and such substitutions
are called solutions of the search.

The mutual exclusion property that should be enjoyed by mutual exclusion
protocols, such as MCS protocol, says that there exists at most one process in
the critical section at any given moment. Therefore, the search command can be
used to check if MCS protocol enjoys the property as follows:

search [1] in MCS-INIT :

init =>* (pc[I]: cs) (pc[J]: cs) S .

where MCS-INIT is the module in which MCS protocol is specified in Maude, I
and J are Maude variables of process IDs, and S is a Maude variable of states
(or soups of observable components). If Maude finds a solution, MCS protocol
does not enjoy the property. Maude did not find any solutions, implying that
MCS protocol enjoys the property when there are three processes.

5.2 Graphical Animations of MCS Protocol

The graphical animation tool [3] has been implemented with DRAW-SVG [6]
that is designed and developed by Joseph LIARD. It is a free online draw-
ing application for designers and developers, making it possible to create fully
standard compliant SVG. We have used DRAW-SVG as an integrated drawing
tool within our tool to support users draw SVG pictures for any state machines.
Our tool is available on the website https://tamntt.bitbucket.io/Research/
GraphicalAnimation/. It allows users to design their own pictures of anima-
tions. Fig. 1 shows the picture we have drawn for MCS protocol when there are
three processes.

The graphical animation tool does not deal with state machines themselves
internally. Instead, what is fed into the tool is basically a finite computation of
a state machine. An example input file of MMCS is as follows:

###keys

glock pc[p1] pc[p2] pc[p3] next[p1] next[p2] next[p3] lock[p1] lock[p2]

lock[p3] pred[p1] pred[p2] pred[p3]

###textDisplay

###states

(glock: nop (pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs) (next[p1]: nop)

(next[p2]: nop) (next[p3]: nop) (lock[p1]: false) (lock[p2]: false)

(lock[p3]: false) (pred[p1]: nop) (pred[p2]: nop) pred[p3]: nop) ||

(glock: nop (pc[p1]: rs) (pc[p2]: l1) (pc[p3]: rs) (next[p1]: nop)

(next[p2]: nop) (next[p3]: nop) (lock[p1]: false) (lock[p2]: false)

6

Fig. 1. Picture of MCS Protocol

(lock[p3]: false) (pred[p1]: nop) (pred[p2]: nop) pred[p3]: nop) ||

glock: nop (pc[p1]: l1) (pc[p2]: l1) (pc[p3]: rs) (next[p1]: nop)

(next[p2]: nop) (next[p3]: nop) (lock[p1]: false) (lock[p2]: false)

(lock[p3]: false) (pred[p1]: nop) (pred[p2]: nop) pred[p3]: nop

There are three segments in an input file as follows:

– ###keys: This is a list of keys which are names of observable components
in a state. The order in which the keys appear must be the same as the order
in which the corresponding observable components appear in each state.

– ###textDisplay: This part specifies how the value of an observable com-
ponent is displayed. If nothing is specified, it is displayed horizontally and
its top appears left most when displaying a queue or string list. There may
be the case, however, where its top should appear right most. Some values,
such as stacks, may have to be displayed vertically instead. The format used
in this part is as follows:

key::::option:::regex(0)++++....++++regex(i)

The format consists of three parts: key, option and regexs. A key appearing
in the key segment is written in the key part. REV, VER or VER-REV
is written in the option part. REV specifies a collection, such as queues
and lists, is displayed such that its top appears right most, VER specifies
a collection, such as stacks, is displayed vertically such that its top appears
top most, and VER-REV specifies a collection is displayed vertically such
that its top appears bottom most. A list of regular expressions is written in

7

Fig. 2. Setting the property ID for displaying values of glock of MMCS

the regexs part. For example, we have an observable component in a state
as (chan1 :< false, pac(1) >< true, pac(2) > empty), and we want the tool
will display value of chan1 as empty < true, pac(2) >< false, pac(1) >, the
textDisplay segment is as follows:

chan1::::REV::::<_,_>++++empty

Two regular expressions <_,_> and empty are written in the regexs part.
They match texts, such as <false,p(1)>, <true,p(2)>, and empty. For the
case MCS, nothing is specified in the ###textDisplay part since values of
observable components are displayed horizontally and theirs top appear left
most.

– ###states: This is a finite computation of a state machine, namely a finite
sequence of states. The sign || is a separator used to distinguish adjacent
states.

After drawing the picture of a state machine, the user needs to edit properties
for texts on the picture so that the observable components of the state machine
can appear on the picture when the state machine is animated. As clicking a text
on the picture and choosing the icon of properties, a pop-up will be displayed
for editing properties. In this pop-up, the name as an ID for the text of an
observable component (name : value) is set for the text so that the value can be
displayed at the place where the text is located. The ID will be used for mapping
it to the values whose name is name appearing in an input data when we run
the graphical animation tool. For example, Fig. 2 shows glock is set as the ID
of the observable component (glock : nop) so that the nop is displayed at the
designated place on a state machine picture.

On the other hand, we want to display (name : value) pairs at different
locations such as process p1 at cs, process p2 at rs, Thus, we can draw
SVG elements as rectangles to display for locations such as rs, cs, . . . , and draw
circles with texts for displaying every processes for every location. Then, we
will set properties for the circle and the text of every process at every location.
The property class of them will be also set is groups. And the property ID of
the circle, and the text of every process will be set as structure KEY V ALUE,
where KEY is the name, and V ALUE is the value of a name-value pair. By this

8

Fig. 3. Setting properties such as Class, ID for displaying the process p3 at the location
rs of MMCS

.

Fig. 4. A state such that p1 is at l10

way, we can see that locations of processes are changed and displayed graphically
when the tool animate states. For example, Fig. 3 shows how to set properties
for the process p3 at location rs. To display the process p3 at the location rs, we
will set the property ID is pc[p3] rs for both the circle, and text element which
visualize process p3. And we will also set the property class is groups for them.

After getting a drawn picture of a state machine and importing a prepared
input file, the tool can run to play a graphical animation of the state machine.
The tool allows human users to adjust the duration of the speed of animation.
The unit of duration is millisecond. The smaller the duration is, the faster the

9

Fig. 5. States 154, 155, 156, 157 and 158

animation is played. Animations can be played step by step in addition to that
they can be played automatically from the beginning to the end. When an ani-
mation is played step by step, we can observe each state transition graphically.

The graphical animation tool basically takes a sequence of states and plays
it graphically. The main purpose of the tool is to help human users recognize
some useful patterns in animated computations, and therefore it is necessary to
generate a long sequence of states. The Maude search command can generate
sequences of states, but cannot generate very long sequences, such as a sequence
that consists of 100 or more states due to the state explosion problem. Thus,
we had written a meta-program in Maude to generate a long sequence of states.
We used the meta-program to generate a finite computation that consists of 200
states for MCS protocol.

The tool can select and display the states that satisfy a condition from the
input finite computation. The format of a defined condition is as follows:

10

(state[’key1’] op1 state[’key2’]) op2 (state[’key3’] op4 ’value’) ...

where key1, key2, and key3 are names of observable components in states and
keys appearing in the key segment of an input file, op1, op2, and op3 are
JavaScript comparison and logical operators, and value is a value. We asked
the tool to select and display the states such that the location of p1 is l10 by
using a condition that is defined as (state[’pc[p1]’] ==’l10’). The tool found 16
such states in the input finite computation. Fig. 4 shows one of the 16 states. The
tool lets us know the state appear in the input finite computation at position
153. In the state, since p1 is at l10, p1 is dequeuing the global queue, while since
p2 and p3 are l4 and l5, p2 and p3 are enqueuing p2 and p3 into the global
queue, respectively, but none of them has completed. Given a state number n,
the tool displays the state at position n. We asked the tool to display the state
at position 153 and play the animation from the state step by step. Fig. 5 shows
the five states at positions 154, 155, 156, 157 and 158 from the top. In state
153, p2 executes the assignment at l4, setting lockp2 true, and moves to l5 but
has not yet completed enqueuing p2 into the global queue. In state 154, p2 exe-
cutes the assignment at l5, setting nextp1 to p2, and moves to l6, when p2 has
eventually completed enqueuing p2 into the global queue. In state 155, glock is
p3, meaning that p3 is the bottom element of the global queue but p3 has not
completed enqueuing p3 into the global queue. In state 155, p1 leaves the loop
at l10 and moves to l11 but has not yet completed dequeuing the global queue.
In state 156, p3 executes the assignment at l5, setting nextp2 to p3, and moves
to l6, when p3 has eventually completed enqueuing p3 into the global queue. In
state 157, p1 executes the assignment at l11, setting lockp2 false, letting know p2

is ready to enter the critical section, and moves to l12. In state 158, the global
queue consists of p2 and p3 in this order because lockp2 is false, nextp2 is p3,
lockp2 is true, nextp2 is nop, and glock is p3.

5.3 Perceiving Characteristics with Graphical Animations

By observing graphical animations of MCS, we have also found some character-
istics or patterns appearing in them. Although we do not prove those character-
istics in this paper, we will model check them in the next sub-section. Proving
the characteristics is one piece of our future work. In this sub-section, we present
some characteristics guessed by observing graphical animations of a finite com-
putation FC1000 that consists of 1000 states as follows:
Characteristic 1:

If there is a process in the critical section cs, the local lock owned by
each process that wants to enter the cs is true.

Characteristic 2:

If a process p is at the location l3 and pred[p] = nop, there is no process
in the critical section cs.

Characteristic 3:

If a process p is at the location l6 and lock[p] = false, there is no process
in the critical section.

11

Characteristic 4:

If a process p1 is at the location l12, another process p2 is at l6, and
pred[p2] = p1 then the lock[p2] is false.

Characteristic 5:

If a process p1 is at the location l9 and another process p2 is at l4 then
the glock is p2.

Characteristic 6:

No state such that a process is at cs, l7, l8, l10, or l11 and another state
is at cs, l7, l8, l10, or l11.

Characteristic 7:

If there is a process is at l3, l4, l5, l6, cs, l7, l8, l10, or l11, glock 6= nop.

Besides taking a close look at several graphical animations of MCS to recognize
some characteristics appearing in the graphical animations, we can also ask the
tool to show us all states that satisfy some conditions. The tool supports us to
select the states among the ones in a given input file such that a condition is
fulfilled and to display their graphical representations. If some states are similar
each other, they will be clustered into one state representation as a state pattern.
For example, if we have a sequence of state such as A, B, C, A, D, E, B, . . . , the
tool will group same states, and display different states such as A, B, C, D, E.
Thus, we can define some conditions to filter satisfied states to check or confirm
some predicted characteristics, and reduce the amount of time for animations
observing. If the tool refutes guessed characteristics, we should correct them. An
example (called Cond1) of the conditions is as follows:

((state[’pc[p1]’] == ’l12’) || (state[’pc[p2]’] == ’l12’) ||

(state[’pc[p3]’] == ’l12’)) && ((state[’pc[p1]’] == ’l6’)

|| (state[’pc[p2]’] == ’l6’) || (state[’pc[p3]’] == ’l6’))

This condition can select the states such that there is a process p1 in the l12, and
there is another process p2 in the l6. By using the Cond1 for selecting satisfied
states from an input file in which the states segment is FC1000, we found 130
states clustered into 66 state patterns. Fig. 6 shows a state pattern that satisfies
the condition Cond1. This pattern is a representation of four same states such as
the state 102, 631, 668, and 769. We used Cond1 to check a guessed characteristic
(called Pre4) as follows:

If there is a process p1 in the l12, and there is another process p2 in the
l6 then lock[p2] = false.

However, we found some states do not satisfy characteristic Pre4. One of them
is shown in Fig. 7. In this state, process p2 is at l12, two processes p1 and p3
are at l6, lock[p1] = true, lock[p3] = false. Thus, we reviewed the graphically
displayed states that enjoyed Cond1. And we perceived that if a process p1 is at
the location l12, another process p2 is at l6, and pred[p2] = p1 then the lock[p2]
is false. This is the Characterictic4 which we have mentioned above. To check
our guess, we made another condition (called Cond2) as follows:

12

Fig. 6. A state pattern clustered from four same states, which satisfies the condition
Cond1.

Fig. 7. A state does not satisfy the characteristic Pre4.

((state[’pc[p1]’] == ’l12’) && (((state[’pc[p2]’] == ’l6’) &&

(state[’pred[p2]’] == ’p1’)) || ((state[’pc[p3]’] == ’l6’) &&

(state[’pred[p3]’] == ’p1’)))) || ((state[’pc[p2]’] == ’l12’)

&& (((state[’pc[p1]’] == ’l6’) && (state[’pred[p1]’] == ’p2’))

|| ((state[’pc[p3]’] == ’l6’) && (state[’pred[p3]’] == ’p2’))))

|| ((state[’pc[p3]’] == ’l12’) && (((state[’pc[p2]’] == ’l6’)

&& (state[’pred[p2]’] == ’p3’)) || ((state[’pc[p1]’] == ’l6’)

&& (state[’pred[p1]’] == ’p3’))))

This condition can select the states such that there is a process p1 in the l12,
and there is another process p2 in the l6 such that pred[p2] = p1. We found 111
states clustered into 51 state patterns, and perceived that all of them satisfied
Characterictic4.

Thus, the tool supports us usefully to perceive some characteristics appear-
ing graphical animations. When paired with an intuitively designed picture and
sequence of states, the tool can create well-crafted animated visualizations which

13

are effective at attracting viewers and supporting them to more conveniently un-
derstand complex characteristics. After using graphical animations to get better
understandings of MMCS and recognizing some characteristics, we will model
check the characteristics by Maude to confirm them. Some of them may be
refuted by model checking, which allows human beings to revise such charac-
teristics based on the counterexamples given by a model checker and may help
them get better understandings of MMCS.

5.4 Confirming Characteristics with Maude

In this sub-section, we describe how to confirm the characteristics with the search
command in Maude.

We asked the Maude search command to find a state such that a given char-
acteristic (or property) is broken. If Maude finds a solution, the characteristic
is not enjoyed by MCS protocol. Otherwise, MCS enjoys the characteristic (or
the property) when there are three processes because we use them in the model
checking experiments. The seven characteristics guessed with the help of the
state machine graphical animation tool can be confirmed with the Maude search
command:

– Characteristic 1:

search [1] in MCS-INIT : init =>* (pc[I]: L1) (pc[J]: L2) (lock[J]: B)

S such that not ((L1 == cs and (L2 == l6)) implies B) .

– Characteristic 2:

search [1] in MCS-INIT : init =>* (pc[I]: L1) (pred[I]: K) (pc[J]: L2)

S such that not ((L1 == l3 and K == nop) implies not (L2 == cs)) .

– Characteristic 3:

search [1] in MCS-INIT : init =>* (pc[I]: L1) (lock[I]: B) (pc[J]: L2)

S such that not ((L1 == l6 and not B) implies not (L2 == cs)) .

– Characteristic 4:

search [1] in MCS-INIT : init =>* (pc[I]: L1) (pc[J]: L2) (lock[J]: B)

(pred[J]: K) S such that not ((L1 == l12 and L2 == l6 and K == I)

implies not B) .

– Characteristic 5:

search [1] in MCS-INIT : init =>* (pc[I]: L1) (pc[J]: L2) (glock: K)

S such that not (((L1 == l9) and (L2 == l4)) implies (K == J)) .

– Characteristic 6:

search [1] in MCS-INIT : init =>* (pc[I]: L1) (pc[J]: L2) S such that

(L1 == cs or L1 == l7 or L1 == l8 or L1 == l9 or L1 == l10 or

L1 == l11) and (L2 == cs or L2 == l7 or L2 == l8 or L1 == l9 or

L2 == l10 or L2 == l11) .

– Characteristic 7:

search [1] in MCS-INIT : init =>* (glock: K) (pc[I]: L) S such that

not ((L == l3 or L == l4 or L == l5 or L == l6 or L == cs or L == l7

or L == l8 or L == l10 or L == l11) implies (not K == nop)) .

14

where MCS-INIT is the module in which MCS protocol is specified in Maude, I,
J, and K are Maude variables of process IDs, L, L1, and L2 are Maude variables of
locations, B is a Maude variable of Boolean, and S is a Maude variable of states
(or soups of observable components). Each of the seven search commands found
no solution, meaning that MCS enjoys the seven characteristics (or the seven
properties) when there are three processes. The model checking experiments,
however, do not guarantee that MCS enjoys the seven characteristics for an
arbitrary number of processes. We will theorem prove the seven characteristics
for an arbitrary number of processes in future by writing what are called proof
scores in CafeOBJ, a sibling language of Maude. We predict that some of the
seven characteristics could be used as lemmas when we theorem prove that MCS
enjoys the mutual exclusion property for an arbitrary number of processes.

5.5 LTL Model Checking

In this sub-section and the following sub-sections, we suppose that there are
two processes p1 and p2 and let init denote the initial state in which the two
processes participate in MCS protocol.

To use Maude LTL model checker, users are supposed to specify atomic
propositions. Let us suppose we model check MCS protocol enjoys the lockout
freedom property when there are two processes. The lockout freedom property
says whenever each process wants to enter the critical section, it will eventually
be there. To express the property in LTL, we need two kinds of atomic proposi-
tions want(P) and crit(P), where P is a process ID. Users are also supposed to
specify a labeling function. For our purpose, we declare the three equations: eq
(pc[P] : l1) S |= want(P) = true ., eq (pc[P] : cs) S |= crit(P) = true .,
and eq S |= PROP = false [owise] ., where P is a Maude variable of process
IDs, S is a Maude variable of states (or soups of observable components), and
PROP is a Maude variable of atomic propositions. The three equations say a state
s satisfies want(P) if and only if (pc[P]: l1) ⊆ s and s satisfies crit(P) if and
only if (pc[P]: cs) ⊆ s.

Then, users are supposed to specify LTL formulas to check. The lockout
freedom property is expressed as wait(P) crit(P). In Maude, the formula
is specified as eq lofree(P) = (want(P) |-> crit(P)) ., where the operator
|-> denotes the leadsto operator .

Model checking that the Kripke structure formalizing MCS protocol satisfies
the lockout freedom property lofree(p1) for p1 is conducted by reducing the
term modelCheck(init,lofree(p1)). Maude model checker generates a coun-
terexample. This is because since we do not use any fairness assumptions, there
may be cases in which only p2 is given a processing resource, which may happen
if we use some unfair scheduler. Let us suppose we use a fair scheduler. If we
adopt a fair scheduler, the fair scheduler guarantees that each process termi-
nates any non-loop statements, such as assignments. For example, if p1 is at l1,
p1 will eventually move to either l6 or cs. To express the situation in which we
adopt a fair scheduler, we use four more kinds of atomic propositions dose(P),
spin1(P), spin2(P) and exit(P). For them, we declare four more equations

15

Fig. 8. A counterexample for the lockout freedom property for MCS protocol in which
comp&swap is not naively used.

eq (pc[P] : rs) S |= dose(P) = true ., eq (pc[P] : l6) S |= spin1(P) =

true ., eq (pc[P] : l10) S |= spin2(P) = true . and eq (pc[P] : l11) S |=

exit(P) = true . in addition to the three equations for atomic propositions.
The assumption used is expressed as (want(P) |-> (crit(P) \/ spin1(P))) /\

(crit(P) |-> (dose(P) \/ spin2(P))) /\ (exit(P) |-> dose(P)) for process
P, which will be referred as fair(P). The LTL formula says that if P is at l2,
P will eventually move to l6 or cs, if P is at cs, P will eventually move to l10 or

16

Fig. 9. A modification such that comp&swap is disused.

rs, and if P is at l11, P will eventually move to rs. The LTL formula to express
the property under the assumption is (fair(p1) /\ fair(p2)) -> lofree(P),
which will be referred as lofuf(P), where -> is the logical implication. Re-
ducing modelCheck(init,lofuf(p1)) does not generate any counterexamples,
meaning that MCS protocol enjoys the lockout freedom property under the as-
sumption that a fair scheduler is adopted when there are two processes.

The rewrite rules chlck and rpnxt2 may be declared as follows:

rl [chlck’] : (pc[P]: l6) (lock[P]: B) => (pc[P]: (if B then l6

else cs fi)) (lock[P]: B) .

rl [rpnxt2’] : (pc[P]: l10) (next[P]: Q) => (pc[P]: (if Q == nop then l10

else l11 fi)) (next[P]: Q) .

If we use chlck’ and rpnxt2’ instead of chlck and rpnxt2, reducing
modelCheck(init,lofuf(p1)) generates a counterexample. This is because the
assumption used does not prohibit a process only repeats a loop forever. Each
of the loops used in MCS protocol does not change anything if its condition is
true. Therefore, the two loops can be formalized as the rewrite rules chlck and
rpnxt2, which could make the assumption simpler.

5.6 A Naive Way to Disuse comp&swap

MCS protocol uses two atomic operators fetch&store and com&swap. We model
check the two properties for a variant of MCS protocol in which comp&swap is
not used. Fig. 9 shows how to change the protocol.
The rewrite rule chglk is then replaced with the following two rewrite rules:

rl [chglk’] : (glock: Q) (pc[P]: l8) => (glock: Q) (pc[P]: (if Q == P

then l8’ else l10 fi)) .

rl [stglk] : (glock: Q) (pc[P]: l8’) => (glock: nop) (pc[P]: l9) .

Model checking the two properties for the variant, the search command does
not find any counterexamples for the mutual exclusion property but the LTL
model checker finds a counterexample for the lockout freedom property even if
a fair scheduler is adopted. Note that we can use exactly the same assumption
used to model check that MCS protocol enjoys the lockout freedom property.

A counterexample generated by Maude LTL model checker consists of a finite
computation from an initial state to a state leading to an infinite loop such that
a finite state sequence is repeated forever or leading to a deadlock state. The
counterexample generated by Maude LTL model checker for the lockout freedom
under the use of a fair scheduler consists of a finite computation that consists of
17 states leading to an infinite loop such that a finite state sequence that consists

17

Fig. 10. A correction of the wrong part.

of 9 states is repeated forever. We had extended the state machine graphical
animation tool so that a counterexample can be graphically animated [7]. Feeding
the counterexample generated by Maude LTL model checker, the extended tool
graphically animates it, repeating the loop part, which lets us realize only p2

enters and leaves the critical section repeatedly while p1 is waiting at l6 until
lockp1 becomes false. Fig. 8 shows the 26 pictures of the states composing the
counterexample. The first 17 states is the finite computation, while the last 9
states is the finite state sequence that repeats forever, making the loop. Note
that state 0 is the top state of the finite computation.

In state 8, p1 is at l2 and is enqueuing it into the global queue, and p2

is at l8 and is dequeuing the global queue. p2 checks the condition of the if
statement at l8. Since glock is not p2, p2 moves to l8’. In state 9, p1 executes
predp1 := fetch&store(glock, p1); at l2, making glock p1 and predp1 p2. In state
9, since predp1 is p2, the predecessor of p1 is p2 in the global queue, meaning
that p1 has not been extracted from the global queue. In what follows, since
predp1 is not nop, p1 sets nextp2 to p1 and lockp1 true, and waits at l6 until
lockp1 becomes false. In state 13, p2 executes glock := nop; at l8’. Therefore, in
state 14, glock is nop, meaning that the global queue is empty, although p1 is
waiting at l6 until lockp1 becomes false. This is way p1 is waiting at l6 forever
and only p2 enters and leaves the critical section repeatedly.

5.7 The Mellor-Crummey & Scott’s Way to Disuse comp&swap

Mellor-Crummey & Scott have also proposed how to implement MCS protocol
such that comp&swap is not used. Fig. 10 shows their way to disuse comp&swap.

Accordingly, the Maude specification of MCS has been revised, and model
checking for the lockout freedom property has been conducted. No counterex-
ample was found.

6 Related Work

MCS protocol has been formally verified. Farn Wang [8] has automatically con-
ducted formal proof that MCS protocol enjoys the mutual exclusion property
for an arbitrary number of processes but has not for the lockout freedom prop-
erty. Farn Wang and Karsten Schmidt [9] have proposed a way to formally con-
duct symmetric symbolic safety-analysis of concurrent software with pointer data

18

structures. MCS protocol has been used as an example to demonstrate the pro-
posed technique. They only consider the mutual exclusion property but not the
lockout freedom property. The second author of the present paper and Kokichi
Futatsugi [10] have semi-formally proved that MCS protocol enjoys both the mu-
tual exclusion property and the lockout freedom property. Neither of them has
taken into account the two variants of MCS protocol in which comp&swap is
naively disused and the Mellor-Crummey & Scott’s way to disuse of comp&swap
is used. Gerhard Schellhorn, Oleg Travkin and Heike Wehrheim [11] have pro-
posed a way to prove concurrent programs enjoy the lockout (or starvation)
freedom property. They proved MCS protocol as an example enjoys the prop-
erty. However, none of them has graphically animated MCS protocol.

Most formal specification languages, such as Z, B method, and Event-B, are
not executable, although some, such as VDM and VDM++, are semi-executable.
Therefore, some researches have been carried out, making formal specifications
written in such languages run, for example, by translating sub-sets of such
languages into programming languages. Running formal specifications is called
specification animation. Specification animation makes it possible to help hu-
man users get better understandings of formal specifications. Therefore, spec-
ification animation have been used to improve some other activities, such as
refinement [12, 13], inspection and formal specification construction [14, 15], and
software monitoring [16]. Although specification animation does not necessarily
mean visual and graphical animations, some tools make it possible to play graph-
ical animations [15]. The formal specification language we have used is Maude.
Since Maude is executable, we do not need to develop any translators. Our ap-
proach to use of Maude and the state machine graphical animation tool has been
directing a similar goal to those of these existing studies.

The second author of the present paper and K. Futatsugi have semi-formally
proved that MCS protocol enjoys both the mutual exclusion property and the
lockout freedom property, but have not formally proved. The semi-formal proofs
may have overlooked several subtle lemmas. The main purpose of the state ma-
chine graphical animation tool helps human users recognize some useful patterns
from graphically animated computations. from which human users could conjec-
ture useful lemmas [3]. One piece of our future work is to recognize useful patterns
from several graphically animated computations, conjecture useful lemmas from
the animated computations and formally verify MCS protocol enjoys the mutual
exclusion property and the lockout freedom property.

7 Conclusion

MCS was used to demonstrate how graphical animations of the state machine of
MCS help human beings perceive characteristics of the state machine appearing
in the animations. Graphical animations of a state machine are generated by
SMGA from finite computations of the state machine. Such guessed character-
istics can be confirmed by the Maude search command. If a counterexample is
found for a guessed characteristic, we could revise the characteristic based on the

19

counterexample. The characteristics graphically perceived and confirmed could
be used as lemmas to theorem prove that MCS enjoys desired properties, such
as the mutual exclusion property and the lockout freedom property. We also
described the model checking experiments with the Maude LTL model checker
that MCS and two variants enjoy the mutual exclusion property.

References

1. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16 (1994) 1512–1542

2. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. Theor.
Comput. Sci. 403 (2008) 239–264

3. Nguyen, T.T.T., Ogata, K.: Graphical animations of state machines. Submitted
for Publication (https://tamntt.bitbucket.io/Research/Paper/smga.pdf) (2017)

4. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9 (1991) 21–65

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude – A High-Performance Logical Framework: How to Specify,
Program and Verify Systems in Rewriting Logic. LNCS 4350. Springer (2007)

6. Liard, J.: Draw SVG website. http://www.drawsvg.org/ (2015)
7. Nguyen, T.T.T., Ogata, K.: A way to comprehend counterexamples generated by

Maude LTL model checker. Submitted for Publication (2017)
8. Wang, F.: Automatic verification of pointer data-structure systems for all numbers

of processes. In: FM’ 99 – Formal Methods. LNCS 1708, Springer (1999) 328–347
9. Wang, F., Schmidt, K.: Symmetric symbolic safety-analysis of concurrent software

with pointer data structures. In: 22nd FORTE. LNCS 2529, Springer (2002) 50–64
10. Ogata, K., Futatsugi, K.: Formal verification of the MCS list-based queuing lock.

In: 5th ASIAN. LNCS 1742, Springer (1999) 281–293
11. Schellhorn, G., Travkin, O., Wehrheim, H.: Towards a thread-local proof technique

for starvation freedom. In: 12th iFM. LNCS 9681, Springer (2016) 193–209
12. Hallerstede, S., Leuschel, M., Plagge, D.: Refinement-animation for Event-B -

towards a method of validation. In: ABZ 2010. LNCS 5977, Springer (2010) 287–
301

13. Hallerstede, S., Leuschel, M., Plagge, D.: Validation of formal models by refinement
animation. Sci. Comput. Program. 78 (2013) 272–292

14. Liu, S.: Validating formal specifications using testing-based specification anima-
tion. In: FormaliSE@ICSE 2016. (2016) 29–35

15. Li, M., Liu, S.: Integrating animation-based inspection into formal design spec-
ification construction for reliable software systems. IEEE Trans. Reliability 65
(2016) 88–106

16. Liang, H., Dong, J.S., Sun, J., Wong, W.E.: Software monitoring through formal
specification animation. ISSE 5 (2009) 231–241

20

