
Graphical Animations of State Machines

Tam Thi Thanh Nguyen and Kazuhiro Ogata

School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)

{tamnguyen,ogata}@jaist.ac.jp

Abstract. Systems verification with interactive theorem proving (ITP)
is one promising technology that could make software reliable, although
it is necessary to utilize many other technologies, such as testing, so as
to make software really reliable. Lemma conjecture is one of the most
intellectual activities in ITP. While we were performing systems verifi-
cation with ITP, we happened to find out some state patterns in which
the reachable states of a state machine are classified and conjectured
several useful lemmas from the state patterns to complete the formal
verification. It would be very useful to make it possible to obtain such
state patterns of a given state machine with a reasonable amount of ef-
forts. This research utilizes human beings’ ability to recognize patterns
in various kinds of data, such as graphical animations. The research aims
at designing and implementing a state machine graphical animation tool
and confirming that human beings can recognize state patterns in state
machine graphical animations.
Keywords: DRAW-SVG, graphical animations, lemmas, Maude, state
machines, state patterns, SVG

1 Introduction

The world crucially depends on software. It would be impossible to even imagine
our lives without use of any software. The societal reliability is almost the same
as that of software. How much human beings rely on software must be increasing
in the future. Therefore, we need to have reliable technologies to make software
truly reliable. Of course, we need to use multiple technologies for this challenge.
One possible promising technology is systems verification with interactive theo-
rem proving. Hence, many proof assistants have been developed, such as PVS,
ACL2, Isabelle and Coq. One of the most intellectual activities in interactive
theorem proving is lemma conjecture. Accordingly, many researches have been
conducted, trying to come up with how to conjecture lemmas. None of them,
however, is not good enough. Thus, we need to make some more efforts to come
up with a better way to do so.

Various kinds of systems can be formalized as state machines. A state ma-
chine M , 〈S, I, T 〉 consists of a set S of states including the set I of initial
states and a binary relation T ⊆ S × S over states. An element (s, s′) ∈ T is
called a state transition of M . The set RM of the reachable states of M is induc-
tively defined as follows: I ⊆ RM and if s ∈ RM and (s, s′) ∈ T , then s′ ∈ RM .

A state predicate p is called an invariant of M if and only if (∀s ∈ RM) p(s).
s0, s1, . . . , sn is called a finite computation of M if and only if s0 ∈ I and
(∀i ∈ {0, . . . , n − 1}) (si, si+1) ∈ T . Note that each state in any finite compu-
tations of M is a reachable state of M . Many requirements of software can be
formalized as invariants. Since verifications of the other classes of properties of-
ten require invariants as lemmas, invariants are the most fundamental class of
properties of state machines.

While we were formally verifying with interactive theorem proving that a
state machine formalizing a communication protocol enjoys an invariant, we
happened to find out that the reachable states of the state machine are classi-
fied into six state patterns. From the six state patterns, we conjectured several
useful lemmas that are also invariants to complete the formal verification [1].
Although the six state patterns are very useful for conjecturing lemmas, it took
time to obtain those six state patterns. This might be because obtaining such
state patterns of a state machine is almost equivalent to conjecturing lemmas
or invariants of the state machine. We would like to obtain such state patterns
of a given state machine with a reasonable amount of efforts. We utilize human
beings’ ability to recognize patterns in various kinds of data including graphical
animations. We believe that if human beings carefully watch graphical anima-
tions of finite computations of a given state machine, they can recognize patterns
in those graphical animations, which are state patterns into which the reachable
states of the state machine can be classified because finite computations of the
state machine consist of reachable states of the state machine. The research
aims at designing and implementing a state machine graphical animation tool
and confirming that human beings can recognize state patterns in state machine
graphical animations.

The rest of the paper is organized as follows. Sect. 2 mentions Alternating
Bit Protocol (ABP) that is used as a running example in this paper and how to
formalize ABP as a state machine and describe the state machine in Maude [2], a
rewriting logic-based specification/programming language. Sect. 3 describes the
motivating example for the research. Sect. 4 describes the requirements to be
satisfied by the state machine graphical animation tool. Sect. 5 describes the
design of the tool. Sect. 6 describes the implementation of the tool. Graphical
animations of a state machine should be long enough so that human beings can
recognize patterns in them. Sect. 7 describes a way to generate long computa-
tions. Sect. 8 reports on an experiment done with the tool. Sect. 9 mentions some
existing related work and Sect. 10 concludes the paper.

2 Preliminaries

Alternating Bit Protocol (ABP) is a communication protocol such that the win-
dow size is 1 in Sliding Window Protocol used in Transmission Control Protocol
(TCP), the most important communication protocol on the globe. ABP consists
of a sender and a receiver. The sender maintains one bit bit1 and a packet pac
to be delivered. The receiver maintains one bit bit2 and a list list that contains

2

Fig. 1. A snapshot of ABP

the packets that have been received. Two unreliable channels chan1 and chan2
are used. They are unreliable in that their elements may be lost (or dropped)
and duplicated. Fig. 1 shows a snapshot of ABP. There are eight actions done in
ABP:

– send1: The sender puts a pair 〈bit1, pac〉 into chan1.
– rec1: The sender gets the top element Boolean b from chan2. If b 6= bit1, bit1

is complemented and pac is incremented.
– send2: The receiver puts bit2 into chan2.
– rec2: The receiver gets the top element 〈b, p〉 from chan1 if chan1 is not

empty. If b = bit2, bit2 is complemented and p is added to list.
– drop1: The top element of chan1 is deleted if it is not empty.
– dup1: The top element of chan1 is duplicated if it is not empty.
– drop2: The top element of chan2 is deleted if it is not empty.
– dup2: The top element of chan2 is duplicated if it is not empty.

ABP can be formalized as a state machine MABP. There are many specifica-
tion languages in which state machines can be described. We use Maude [2]
to describe state machines. States can be expressed in various ways. In
this paper, a state is expressed as an associative-commutative collection of
name-value pairs. Name-value pairs are called observable components and
associative-commutative collections are called soups. Thus, a state is ex-
pressed as a soup of observable components. Each state of MABP is charac-
terized by the six values as shown in Fig. 1. Therefore, each state of MABP is
(chan1: prq) (chan2: bq) (bit1: b1) (bit2: b2) (pac: p) (list: ps),
where prq is a queue of Boolean-packet pairs, bq is a queue of Booleans, b1 is a
Boolean, b2 is a Boolean, p is a packet and ps is a list of packets. For example,
chan1 is a name, prq is a value, and (chan1: prq) is an observable compo-
nent. Since (chan1: prq) (chan2: bq) (bit1: b1) (bit2: b2) (pac: p)

(list: ps) is a soup of observable components, even if the order in
which the observable components appear is changed, such as (chan2: bq)

(bit1: b1) (chan1: prq) (bit2: b2) (pac: p) (list: ps), it represents
the same state. The initial state is expressed as (chan1: empty) (chan2: empty)

(bit1: false) (bit2: false) (pac: pac(0)) (list: nil). TABP is de-
scribed as the eight rewrite rules:

3

Fig. 2. Six state patterns of RMABP

crl [send1] : (chan1: PC) (bit1: B1) (pac: P) => (chan1: (PC < B1,P >)) (bit1: B1) (pac: P)
if len(PC) < Len /\ ord(P) < NoP .

rl [rec1] : (chan2: (B BC)) (bit1: B1) (pac: P)
=> (chan2: BC) (bit1: (if B1 == B then B1 else not B1 fi))

(pac: (if B1 == B then P else next(P) fi)) .
crl [send2] : (chan2: BC) (bit2: B2) => (chan2: (BC B2)) (bit2: B2) if len(BC) < Len .
rl [rec2] : (chan1: (< B,P > PC)) (bit2: B2) (list: L)
=> (chan1: PC) (bit2: (if B2 == B then not B2 else B2 fi))

(list: (if B2 == B then (P L) else L fi)) .
rl [drop1] : (chan1: (PC1 BP PC2)) => (chan1: (PC1 PC2)) .
rl [drop2] : (chan2: (BC1 B BC2)) => (chan2: (BC1 BC2)) .
crl [dup1] : (chan1: (PC1 BP PC2)) => (chan1: (PC1 BP BP PC2)) if len(PC1 BP PC2) < Len .
crl [dup2] : (chan2: (BC1 B BC2)) => (chan2: (BC1 B B BC2)) if len(BC1 B BC2) < Len .

where PC, PC1 and PC2 are Maude variables of Boolean-packet pair queues, BC,
BC1 and BC2 are ones of Boolean queues, B, B1 and B2 are ones of Booleans, P
is one of packets, and Len and NoP are ones of natural numbers. The function
len takes a queue and returns the number of its elements, and the function ord

takes a packet pac(n), where n is a natural number, and returns n.

3 Motivating Example

When we were formally verifying that ABP satisfies a desired property, we found
that RMABP is classified into six patterns shown in Fig. 2. From the six state
patterns, we were able to conjecture several useful lemmas to complete the formal
verification. For example, since SP3 is the only pattern such that chan2 consists
of two different Booleans, SP3 allows us to conjecture the following lemma:

if chan2 contains two Booleans b1 and b2 in a raw such that b1 6= b2
and b1 is closer to the top, then each Boolean b appearing in chan2 later
than b2 is the same as b2 and b2 is the same as bit2;

and since SP6 is the only pattern such that chan1 consists of two different pairs,
SP6 allows us to conjecture the following lemma:

4

if chan1 contains two pairs 〈b1, p1〉 and 〈b2, p2〉 in a raw such that
〈b1, p1〉 6= 〈b2, p2〉 and 〈b1, p1〉 is closer to the top, then each pair 〈b, p〉
appearing in chan1 later than 〈b2, p2〉 is the same as 〈b2, p2〉 and 〈b2, p2〉
is the same as 〈bit1, pac〉.

If it is possible to find out such state patterns of a given state machine
with a reasonable amount of efforts, this could give non-trivial contributions
to systems verification based on interactive theorem proving because such state
patterns help human users conjecture useful lemmas.

Human beings are very good at recognizing patterns in various kinds of data,
such as sounds, still images and graphical animations. If human beings carefully
watch graphical animations of finite computations of a state machine, they could
recognize patterns in them from which they could conjecture useful lemmas. It
would require much fewer efforts and less time to watch graphical animations of
finite computations of a state machine M than to try to formally prove that M
enjoys invariants so as to conjecture lemmas. This has motivated us to develop
the state machine graphical animation tool. We do not try to create anything
that imitates human beings’ ability to recognize patterns but try to make best
use of this ability so as to conjecture lemmas in this research1.

4 Requirements

There are several requirements the graphical animation tool of state machines
should satisfy, among which are as follows:

1. Any state machines can be graphically animated.
2. Human users are intuitively allowed to design the frames (or pictures) of a

graphical animation of a state machine.
3. Human users do not need to write any non-trivial pieces of code (or pro-

grams).
4. The speed of animations can be freely adjusted.
5. Very long animations can be made.

Requirement 1 implies that any applications can be graphically animated,
provided that they can be formalized as state machines. Since it has been known
that various kinds of systems can be formalized as state machines, the tool should
be able to deal with various kinds of systems.

Each application must have an appropriate frame design of graphical ani-
mations of the state machine formalizing the application, and each human user
must have his/her own preference. Frames (or pictures) should be able to be
intuitively designed. Therefore, requirement 2 is mandatory.

1 Our group has also been attempting [3] to automatically extract state patterns of a
given state machine with Inductive Logic Programming, a combination of machine
learning and logic programming.

5

It is fun to write programs, which is however error-prone as well as time-
consuming and should be avoided if unnecessary. Hence, requirement 3 is rea-
sonable.

If the speed of graphical animations of state machines is low, novice users
could comprehend basic transitions of the state machines. Our goal to be
achieved is, however, to help experienced engineers as well as researchers cap-
ture some non-trivial characteristics of the reachable states of state machines.
To achieve this goal, the speed should be able to be adjusted. It would be es-
sential to play a graphical animation of a state machine very quickly as well as
smoothly so that some non-trivial characteristics of the reachable states could
be observed. Therefore, requirement 4 is the most important for our goal.

Moreover, it would be necessary to play a very long animation so that some
non-trivial characteristics of the reachable states could be observed. Accordingly,
we need to satisfy requirement 5 as well.

5 Design

If the state machine graphical animation tool deals with state machines inter-
nally, we need to design an internal representation of state machines or adopt
some existing one. It would be clumsy to ask human users to write state machines
in such an internal representation. Consequently, we need to design a specifica-
tion language for state machines or adopt some existing one. If so, it would be
necessary to translate state machines written in a specification language into
those written in an internal representation. We should develop multiple trans-
lators for multiple specification languages to fulfill requirement 1. Since many
specification languages have been and would be proposed, however, it would not
be smart to develop a translator for each specification language because it is not
a trivial task to develop even one translator for one specification language.

We have not designed the state machine graphical animation tool such that
it deals with state machines internally but designed it such that it basically takes
a finite computation of a state machine. This is because tools, such as model
checkers, that can deal with state machines can generate finite computations of
state machines. We need to fix how to represent each state of state machines
and finite sequences of states. It would be much easier, however, to transform
some different state representations to that used for the state machine graphical
animation tool than to translate state machines written in a specification lan-
guage into those written in another one. Besides, it would be straightforward to
transform some different representations of finite state sequences to that used for
the state machine graphical animation tool once different state representations
have been transformed into that used for the tool. This is how requirement 1 is
achieved.

If each state in a finite computation of a state machine is graphically repre-
sented, the finite computation is essentially a film of a graphical animation of
the state machine. Therefore, it would suffice to allow human users to intuitively

6

design graphical state representations (or images or pictures) of state machines
to achieve requirement 2.

It would be possible to make a clear correspondence between term (or text)
state representations and graphical state representations. This correspondence
is treated as part of the input data to the state machine graphical animation
tool, together with a finite computation of a state machine. Although human
users are supposed to write such a correspondence, we do not think that this is
a non-trivial piece of code (or programs). This is how we achieve requirement 3.

In our design of the state machine graphical animation tool, a finite compu-
tation of a state machine can be regarded as a film. Accordingly, the speed of the
animation can be adjusted by changing (redrawing) the current state to the suc-
cessor state in a specified amount of time, such as 10ms and 50ms. Requirement
4 is achieved in this way.

If we try to generate all finite computations whose length is some specific
bound and the bound is large enough, we quickly encounter the notorious state
explosion problem. If the number of packets to be delivered is 10 and the capacity
of each channel is 10, then the Maude search command could exhaustively tra-
versed RMABP

up to depth 37 but encountered the state explosion problem when
the depth was 38. It would be unnecessary to generate all finite computations
up to some shallow depth but necessary to generate some long finite computa-
tions. It would be inadequate to generate computations in which some specific
state transitions are only taken. We will describe how to generate adequate long
computations later.

6 Implementation

6.1 Drawing state machine pictures

Fig. 3. A picture of MABP

It would be possible to
implement the tool from
scratch, but take many
efforts as well as much
time to do so. We would
like to make the tool
available in as many plat-
forms and/or environ-
ments as possible. We
would like to make it ex-
tensible as well as main-
tainable as much as pos-
sible. Therefore, it would
not be preferable to im-
plement it from scratch
if there exist some tech-
nologies available to achieve our goal. One of such technologies is Scalable Vector
Graphics (SVG) used to define graphics for the Web. SVG has several methods
for drawing paths, boxes, circles, text, and graphic images. It is useful to use

7

SVG for drawing pictures of state machines. Since SVG is supported by almost
all major web browsers, it makes it possible to make the tool available in as
many platforms and/or environments as possible. Several tools with which SVG
animations can be made have been developed. One of them is DRAW-SVG [4],
which we have used in this research. DRAW-SVG is a free online drawing ap-
plication for designers and developers, making it possible to create fully stan-
dard compliant SVG. We use it as an integrated drawing tool within our web-
site (https://tamntt.bitbucket.io/Research/GraphicalAnimation/) by using API
based on Mozilla jsSchannel. The display of DRAW-SVG is supported by all currently
available browsers except for Internet Explorer.

Human users can use DRAW-SVG to draw, save, edit and open any SVG pictures
of any state machines easily and visually. After drawing the picture of a state ma-
chine, the user needs to edit properties for texts on the picture so that the observable
components of the state machine can appear on the picture when the state machine
is animated. As clicking a text on the picture and choosing the icon of properties, a
pop-up will be displayed for editing properties. In this pop-up, the name as an ID for
the text of an observable component (name : value) is set for the text so that the
value can be displayed at the place where the text is located. The ID will be used for
mapping it to the values whose name is name appearing in an input data when we run
the graphical animation tool. For example, chan1 is set as the ID of the observable
component (chan1 : prq) so that the queue prq of Boolean-packet pairs is displayed at
the designated place on a state machine picture. Fig. 3 shows a picture of MABP drawn
with the tool.

6.2 Input file format

The graphical animation tool does not deal with state machines themselves internally
to achieve requirement 1. Instead, what are fed into the tool is basically a finite com-
putation of a state machine. The input file format is described.

An example input file of MABP is as follows;

###keys
chanl chan2 bitl bit2 pac list
###textDisplay
chanl::::REV::::<_,_>++++empty
###states
(chanl: empty chan2: empty bitl: false bit2: false pac: pac(0) list: nil) ||
(chanl: (< false,pac(0) > empty) chan2: empty bitl: false bit2: false pac: pac(0) list: nil) ||
(chanl: empty chan2: empty bitl: false bit2: true pac: pac(0) list: (pac(0) nil)) ||
(chanl: empty chan2: (true empty) bitl: false bit2: true pac: pac(0) list: (pac(0) nil)) ||
chanl: empty chan2: empty bitl: true bit2: true pac: pac(l) list: (pac(0) nil)

There are three segments in an input file as follows:

– keys: This is a list of keys which are names of observable components in a state.
These keys are used as IDs described in the last sub-section. The order in which the
keys appear must be the same as the order in which the corresponding observable
components appear in each state.

– textDisplay: This part specifies how the value of an observable component is dis-
played. When displaying a queue, if nothing is specified, it is displayed horizontally
and its top appears left most. There may be the case, however, where its top should
appear right most. Some values, such as stacks, may have to be displayed vertically
instead. For example, The value of (chan1 : prq) should be displayed such that its
top appears right most. The format used in this part is as follows:

8

key::::option:::regex(0)++++....++++regex(i)

The format consists of three parts: key, option and regexs. A key appearing in the
key segment is written in the key part. REV, VER or VER-REV is written in
the option part. REV specifies a collection, such as queues and lists, is displayed
such that its top appears right most, VER specifies a collection, such as stacks, is
displayed vertically such that its top appears top most, and VER-REV specifies
a collection is displayed vertically such that its top appears bottom most. A list
of regular expressions is written in the regexs part. For example, the textDisplay
segment of MABP is as follows:

chan1::::REV::::<_,_>++++empty

Tow regular expressions <_,_> and empty are written in the regexs part.
They match texts, such as <false,p(0)> and empty, appearing in the ob-
servable component (chan1 : prq). If the value of (chan1 : prq) is
<false,p(0)> <true,p(1)> empty, then what is displayed as the value of (chan1 :
prq) is empty <true,p(1)> <false,p(0)> because of REV.

– states: This is a finite computation of a state machine, namely a finite sequence of
states. The sign || is a separator used to distinguish adjacent states.

6.3 Running tool

A picture of a state machine has been drawn and/or got and an input file has been
prepared and/or imported, and then the tool can run to play a graphical animation of
the state machine. The tool allows human users to adjust the duration of the speed of
animation. The unit of duration is millisecond. The smaller the duration is, the faster
the animation is played. Animations can be played step by step in addition to that
they can be played automatically from the beginning to the end. When an animation
is played step by step, we can observe each state transition graphically. For example,
Fig. 4 shows a state transition (done by rec2) from state 32 to state 33 in a finite
computation of MABP.

6.4 The algorithm of graphical animation

The algorithm used in the tool is as follows:

Function: animation(svg, states, keys, textDisplay, duration)

for(i = 0, i < size(seqStates), i+1)

state = states[i];

preState = if i > 0 then seqState[i-1] else state;

for(j = 0, j < size(keys), j+1)

key = keys[j]; value2 = state[key]; value1 = preState[key]

svgText = svg.selectById(key); attr = empty;

if(value1 != value2) attr is changed red color for text.

else attr is changed black color for text.

setTransition(svgText, attr, value2, duration, textDisplay[key])

9

Fig. 4. A step running of an animation

The algorithm has been implemented in JavaScript. The parameters keys, textDisplay
and states are set the three segments in an input file, respectively. The parameter
duration is a value of animation duration that has been set by a human user. The
parameter svg is an object of the SVG picture that has been drawn and/or got. When
switching the picture of the previous state s with the picture of the successor state
s′, the values value1 and value2 of each observable component in s and s′ are com-
pared. The SVG element svgText that will be displayed as the value of the observable
component in s′ can be obtained by svg.selectById(key) where key is the name of
the observable component. If value1 and value2 are different, red is used as the color
attribute for svgText. Otherwise, black is used. Then, function setTransition is used
to display svgText as the value of the observable component in s′.

6.5 Filtering states

Observing graphical animations of a state machine may allow human users to recognize
some relations among values of some observable components, such as the equivalence
of bit1 and bit2 of ABP. It would be useful to select the states among the ones in
a given input file such that some condition is fulfilled and display their graphical
representations. The tool allows human users to define such a condition. The format
of a condition is as follows:

(state[’key1’] op1 state[’key2’]) op2 (state[’key3’] op4 ’value’) ...

10

where key1, key2 and key3 are names of observable components in states and keys
appearing in the key segment of an input file, op1, op2 and op3 are JavaScript com-
parison and logical operators, and value is a value. An example (called Cond1) of the
conditions is as follows:

(state[’bit1’] == state[’bit2’] && state[’chan1’] != ’empty’

&& state[’chan2’] != ’empty’)

This condition can select the states such that bit1 equals bit2, chan1 is not empty and
chan2 is not empty. Let Cond2 be the condition obtained by replacing == with != in
Cond1.

In addition to the condition that has been just described, it is possible to write
constraints on the value of each observable component if the value is a collection, such
as a list and a queue. The format of the constraint is as follows:

key::::regex1++++regex2++++...++++regexn::::cond::::opt

where key is the name of an observable component, regex1, regex2, . . . , regexn are
regular expressions used to detect elements in the value, cond is a condition to be
satisfied by the elements, and opt is either NONE or REPEAT. Let the value of the ob-
servable component be true true true false false false empty. If opt is NONE,
the value as it is, namely true true true false false false empty, is displayed. If
opt is REPEAT, its abbreviation true ... true false ... false is displayed. Even
though two values are different but their abbreviations are the same, the two values
are treated as equals if opt is REPEAT. Eight examples (called Consti for i = 1, 2, . . . , 8,
respectively) of the constraints are as follows:

chan1::::<_,_>::::topElement(_) == bottomElement(_)::::NONE

chan1::::<_,_>::::topElement(_) == bottomElement(_)::::REPEAT

chan1::::<_,_>::::topElement(_) != bottomElement(_)::::NONE

chan1::::<_,_>::::topElement(_) != bottomElement(_)::::REPEAT

chan2::::_ _::::topElement(_) == bottomElement(_)::::NONE

chan2::::_ _::::topElement(_) == bottomElement(_)::::REPEAT

chan2::::_ _::::topElement(_) != bottomElement(_)::::NONE

chan2::::_ _::::topElement(_) != bottomElement(_)::::REPEAT

where topElement and bottomElement refer to the top and bottom of the value (the
queue), respectively.

Fig. 5. A state that satisfies Cond1, Const4 and Const6

Given an input file
in which the keys and
textDisplay segments
are the same as the
input file shown ear-
lier and the states seg-
ment is a finite compu-
tation (called FC150)
that consists of 150
states, when Cond1,
Const4 and Const6 are
used and we ask the
tool to find state patterns, the tool finds 18 occurrences of states that satisfy Cond1,
Const4 and Const6. Since some states occurs more than once in the finite computation,
the tool also finds seven different states in it. One of them is shown in Fig. 5.

11

Fig. 6. A state pattern

6.6 Describing and displaying state patterns

For each of the states selected among the ones in a given input file such that some
conditions and/or constraints are fulfilled, human users may recognize a state pattern.
The tool allows human users to describe a state pattern and display it graphically. For
example, from a state shown in Fig. 5, one may recognize the state pattern written as
follows:

(chan1: < true,pac(i) > ... < true,pac(i) > < false,pac(i+1) > ...

< false,pac(i+1) > chan2: false ... false bit1: false bit2: false

pac: pac(i+1) list: pac(i) pac(i-1) ...)

The content of chan1 should be displayed in the reverse order. The tool allows us to
specify it as follows:

chan1::::REV::::<_,_>++++\.\.\.

Then the tool displays the state pattern shown in Fig. 6 that is essentially equivalent
to SP6 shown in Fig. 2.

7 Generation of Long Computations

Maude provides metaprorgamming functionalities. A metaprogram is a program that
takes programs as inputs and performs some useful computations. It is necessary to
deal with a Maude specification (or program) of a state machine M to generate a long
computation of M . Therefore, we have written a metaprogram that takes a Maude
specification of M as one input to generate a long computation of M . The algorithm
to generate a long computation of M is as follows:

genSeq(Mod,S,B,R)

seq := S; len := 1;

while len < B

succs := findAllSuccs(Mod,S);

if succs = empty then break;

s’ := selectNextTerm(succs,R rem length(succs));

seq.add(s’); len = len + 1; R = random(R quo 100000);

return seq;

12

in which Mod is the Maude specification of M , S is the first state of the computation,
B is a bound that is the length of the computation being generated, and R is a seed of
random numbers. As R indicates, the successor state of a state will be randomly chosen
so that various different computations can be generated.

This algorithm is implemented in Maude as follows:

op selNxt : TermList Nat -> Term .

op subGenSeq : Module TermList Nat Bound -> TermList .

op genSeq : Module Term Nat Bound -> TermList .

eq selNxt(TList,R) = getTermByIndex(TList,R rem termListLength(TList)) .

eq subGenSeq(Mod,empty,R,B) = empty .

eq subGenSeq(Mod,TList,R,B)

= genSeq(Mod,selNxt(TList,R),random(R quo 100000),B) .

eq genSeq(Mod,S,R,0) = empty .

eq genSeq(Mod,S,R,s(B))

= S , subGenSeq(M,getAllSuccessors(Mod,S,getLabels(Mod)),R,B) .

where Mod, S, R, B and TList are Maude variables of the sorts Module, Term, Nat, Nat
and TermList, respectively.

s(B) represents B+1 and can be used as the pattern as any positive natural num-
ber. getLabels(Mod) returns a collection of all labels of the rewrite rules in Mod. The
function getAllSuccessors takes Mod, S representing a state and a collection of rewrite
rule labels, and returns a collection of successor states of S obtained by applying each
of the rewrite rules to S if possible. S may be a deadlock state, namely that it may
not have any successor states. If that is the case, the empty collection is returned. The
function random generates a pseudo-random number based on the given seed. Based
on the pseudo-random number generated, the next state is chosen by selNxt. Since
modules, terms, etc. are expressed as Maude terms, Maude makes it possible to write
metaprograms in Maude as ordinary programs (or specifications) in Maude.

What is returned by the function genSeq is a finite computation but the com-
putation is represented as a meta-term. Hence, such a meta-represented term should
be converted to another representation that can be used for the tool. Then, we have
defined the function downTermList as follows:

op nil : -> ListSys [ctor] .

op _||_ : Sys ListSys -> ListSys [ctor] .

op downTermList : TermList -> ListSys .

eq downTermList(empty) = nil .

eq downTermList(TE) = downTerm(TE, nil) .

eq downTermList((TE,TList)) = downTerm(TE, nil) || downTermList(TList) .

where TE and TList are Maude variables of sorts Term and TermList. ListSyst is the
sort of finite computations that can be used for the tool. The function downTerm takes
a meta-represented term and convert it into an object-level representation of the term.
For example, we can generate the finite computation FC150 of MABP whose length is
150 by reducing the following term:

downTermList(genSeq(upModule(’ABP,false),upTerm(init),5,150)) .

where the function upModule takes a module name as a quoted term, such as ’ABP where
ABP is the name of a module in which ABP is specified, and converts it into a meta-
represented term of the module and the function upTerm takes a term and converts

13

Table 1. Experimental results with FS150

– Cnd1 +Cst1,5 +Cst2,6 +Cst1,7 +Cst2,8 +Cst3,5 +Cst4,6 +Cst3,7 +Cst4,8
#OS 50 37 37 0 0 18 18 0 0
#DSP 40 24 11 0 0 16 7 0 0
SP – – SP1,5 – – – SP6 – –

– Cnd2 +Cst1,5 +Cst2,6 +Cst1,7 +Cst2,8 +Cst3,5 +Cst4,6 +Cst3,7 +Cst4,8
#OS 39 18 18 21 21 0 0 0 0
#DSP 32 14 8 18 10 0 0 0 0
SP – – SP2,4 – SP3 – – – –

it into a meta-represented term of the term. The way to generate finite computations
can generate a finite computations up to about 100000 for MABP. Note that a finite
computation made by downTermList has || nil as the end that should be deleted
when it is used in an input file.

8 Experiment

We have used the finite computation FC150 of MABP.. Observing the animation from
FC150 has made us find out some of the six state patterns shown in Fig. 2. Even if
we may not find out any interesting state patters, we can ask the tool to look for the
states in the animation that satisfy conditions and/or constraints. We have used Condi
for i = 1, 2 and Constj for j = 1, 2, . . . , 8. When we used Cond1, the tool found 50
occurrences of the states that satisfied Cond1 among which there were 40 different
states. When we used Const1 and Const5 as well, the tool found 37 occurrences of the
states that satisfied Cond1, Const1 and Const5 among which there were 24 different
states. When we instead used Const2 and Const6 as well, the tool found 37 occurrences
of the states that satisfied Cond1, Const2 and Const6 among which there were 11
different state patterns. Taking a close look at those 11 different state patterns made
us recognize SP1 and SP5 shown in Fig. 2. Table 1 shows the experimental results in
which Cndi, Cstj,k, #OS, #DSP, SP and SPj(,k) stand for Condi, Constj and Constk,
the number of occurrences of states, the number of different states or state patterns,
state patterns, and SPj (and SPk), respectively. The tool reveals that there is no state
that satisfies some condition and constraints. Although the tool does not prove it, this
information is crucial.

9 Related Work

Most formal specification languages, such as Z, B method and Event-B, are not exe-
cutable, although some, such as VDM and VDM++, are semi-executable. Therefore,
some researches have been carried out, making formal specifications written in such
languages run, for example, by translating sub-sets of such languages into programming
languages. Running formal specifications is called specification animation. Specification
animation makes it possible to help human users get better understandings of formal
specifications. Therefore, specification animation have been used to improve some other
activities, such as refinement [5, 6], inspection and formal specification construction [7,
8], and software monitoring [9]. Although specification animation does not necessarily
mean visual and graphical animations, some tools make it possible to play graphical
animations [8]. The formal specification language we have used is Maude. Since Maude
is executable, we do not need to develop any translators.

14

Some model checkers, such as Alloy and PAT, are equipped with graphical anima-
tions of scenarios, such as counterexamples. Such graphical animations of counterexam-
ples help human users get better understandings of the reason why the counterexamples
occur. Such model checkers, however, do not allow human users to draw pictures used
for graphical animations.

Many researchers have been convinced that (graphical) specification animation can
help human users get better understandings of formal specifications, but to the best of
our knowledge none of them have tried to utilize graphical specification animation for
conjecturing lemmas in interactive theorem proving.

10 Conclusion

The tool is available at the website (https://tamntt.bitbucket.io/Research/
GraphicalAnimation/). The experiment demonstrates the tool could help human users
find out interesting state patterns. We also conducted another case study in which
animations of a state machine formalizing Qlock, a mutual exclusion protocol, were
observed and some interesting state patterns were found out. We will conduct some
more case studies in which we will tackle with the tool some protocols or systems such
that we have not formally verified that they enjoy some invariants, finding out inter-
esting state patterns and conjecturing lemmas from those state patterns to complete
the formal verification.

References

1. Ogata, K.: Lecture 8 Analysis of Alternating Bit Protocol 2. Sinaia Shcool on For-
mal Verification of Software Systems (http://www.jaist.ac.jp/~kokichi/class
/SinaiaSchoolFVSS0803/) (2008)

2. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude – A High-Performance Logical Framework: How to Specify,
Program and Verify Systems in Rewriting Logic. LNCS 4350. Springer (2007)

3. Ho, D.T., Zhang, M., Ogata, K.: Case studies on extracting the characteristics of
the reachable states of state machines formalizing communication protocols with
inductive logic programing. In: ILP (Late Breaking Papers). (2015) 33–47

4. Liard, J.: Draw SVG website. http://www.drawsvg.org/ (2015)
5. Hallerstede, S., Leuschel, M., Plagge, D.: Refinement-animation for Event-B - to-

wards a method of validation. In: ABZ 2010. LNCS 5977, Springer (2010) 287–301
6. Hallerstede, S., Leuschel, M., Plagge, D.: Validation of formal models by refinement

animation. Sci. Comput. Program. 78 (2013) 272–292
7. Liu, S.: Validating formal specifications using testing-based specification animation.

In: FormaliSE@ICSE 2016. (2016) 29–35
8. Li, M., Liu, S.: Integrating animation-based inspection into formal design specifica-

tion construction for reliable software systems. IEEE Trans. Reliability 65 (2016)
88–106

9. Liang, H., Dong, J.S., Sun, J., Wong, W.E.: Software monitoring through formal
specification animation. ISSE 5 (2009) 231–241

15

